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+
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In view of future plans for accurate measurements of the theoretically clean branching ratios
Br(K+ → π+νν̄) and Br(KL → π0νν̄), that should take place in this decade, we collect the rele-
vant formulae for quantities of interest and analyze their theoretical and parametric uncertainties.
We point out that in addition to the angle β in the unitarity triangle (UT) also the angle γ can
in principle be determined from these decays with respectable precision and emphasize in this
context the necessity of a calculation of the charm contribution to K+ → π+νν̄ at the NNLO
level. In addition to known expressions we present several new ones that should allow transparent
tests of the Standard Model (SM) and of its extensions. While our presentation is centered around
the SM, we also discuss models with minimal flavour violation and scenarios with new complex
phases in enhanced Z0 penguins and/or B0

d
− B̄0

d
mixing. We give a brief review of existing results

within specific extensions of the SM and investigate the interplay between the K → πνν̄ complex,
the B0

d,s
− B̄0

d,s
mass differences ∆Md,s and the angles β and γ that can be measured precisely

in two body B decays one day. We derive a new “golden” relation between B and K systems
that involves (β, γ) and Br(KL → π0νν̄) and investigate the virtues of (Rt, β), (Rb, γ), (β, γ) and
(η̄, γ) strategies for the UT in the context of K → πνν̄ decays with the goal of testing the SM
and its extensions.
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I. INTRODUCTION

The rare decays of K and B mesons play an important role in the search for the underlying flavour dynamics and
in particular in the search for the origin of CP violation (Ali, 2003; Buchalla, 2003; Buchalla et al., 1996a; Buras,
1998, 2003a,b, 2004; Fleischer, 2002, 2004; Hurth, 2003; Nir, 2001). Among the many K and B decays, the rare
decays K+ → π+νν̄ and KL → π0νν̄ are very special as their branching ratios can be computed to an exceptionally
high degree of precision that is not matched by any other decay of mesons. While the theoretical uncertainties in the
prominent decays like B → Xsγ, B → Xsµ

+µ− and Bs → µ+µ− amount typically to ±10% or larger at the level of
the branching ratio, the corresponding uncertainties in KL → π0νν̄ amount to 1-2% (Buchalla and Buras, 1993a,b,
1999; Misiak and Urban, 1999). In the case of K+ → π+νν̄, the presence of the internal charm contributions in the
relevant Z0 penguin and box diagrams implies the theoretical uncertainty of ±7% at the NLO level (Buchalla and
Buras, 1994a, 1999), but this uncertainty could be in principle reduced to ±2% by performing a NNLO calculation
(Buras et al., 2004b).

The reason for the exceptional theoretical cleanness of K+ → π+νν̄ and KL → π0νν̄ (Littenberg, 1989) is the fact
that the required hadronic matrix elements can be extracted, including isospin breaking corrections (Marciano and
Parsa, 1996), from the leading semileptonic decay K+ → π0e+ν. Moreover, extensive studies of other long-distance
contributions (Buchalla and Isidori, 1998; Ecker et al., 1988; Fajfer, 1997; Falk et al., 2001; Geng et al., 1996; Hagelin
and Littenberg, 1989; Lu and Wise, 1994; Rein and Sehgal, 1989) and of higher order electroweak effects (Buchalla
and Buras, 1998) have shown that they can safely be neglected at present. On the other hand when the uncertainties
in the charm contribution will be decreased to a few percent level, also long distance contributions and higher order
electroweak effects have to be better quantified. The most recent reviews on K → πνν̄ can be found in (Buras,
2003a,b, 2004; Isidori, 2003).

We are fortunate that, while the decay K+ → π+νν̄ is CP conserving and depends sensitively on the underlying
flavour dynamics, its partner KL → π0νν̄ is purely CP violating within the Standard Model (SM) and most of its
extensions and consequently depends also on the mechanism of CP violation. Moreover, the combination of these two
decays allows to eliminate the parametric uncertainties due to the CKM element |Vcb| and mt in the determination of
the angle β in the unitarity triangle (UT) or equivalently of the phase of the CKM element Vtd (Buchalla and Buras,
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1994b, 1996). The resulting theoretical uncertainty in sin 2β is comparable to the one present in the mixing induced
CP asymmetry aψKS

and with the measurements of both branching ratios at the ±10% and ±5% level, sin 2β could
be determined with ±0.05 and ±0.025 precision, respectively. This independent determination of sin 2β with a very
small theoretical error offers a powerful test of the SM and of its simplest extensions in which the flavour and CP
violation are governed by the CKM matrix, the so-called MFV (minimal flavour violation) models (Buras, 2003a,b,
2004; Buras et al., 2001b; D’Ambrosio et al., 2002). Indeed, in K → πνν̄ the phase β originates in Z0 penguin
diagrams (∆S = 1), whereas in the case of aψKS

in the B0
d − B̄0

d box diagrams (∆B = 2). Any “non-minimal”
contributions to Z0 penguin diagrams and/or box B0

d − B̄0
d diagrams would then be signaled by the violation of the

MFV “golden” relation (Buchalla and Buras, 1994b)

(sin 2β)πνν̄ = (sin 2β)ψKS
. (I.1)

Now, strictly speaking, according to the common classification of different types of CP violation (Ali, 2003; Buchalla,
2003; Buras, 2003a,b, 2004; Fleischer, 2002, 2004; Hurth, 2003; Nir, 2001), both the asymmetry aψKS

and a non-
vanishing rate for KL → π0νν̄ in the SM and in most of its extensions signal the CP violation in the interference of
mixing and decay. However, as the CP violation in mixing (indirect CP violation) in K decays is governed by the
small parameter εK , one can show (Buchalla and Buras, 1996; Grossman and Nir, 1997; Littenberg, 1989) that the
observation of Br(KL → π0νν̄) at the level of 10−11 and higher is a manifestation of a large direct CP violation with
the indirect one contributing less than ∼ 1% to the branching ratio.

Additionally, this large direct CP violation can be directly measured without essentially any hadronic uncertainties,
due to the presence of the νν̄ in the final state. This should be contrasted with the very popular studies of direct
CP violation in non-leptonic two–body B decays (Ali, 2003; Buchalla, 2003; Buras, 2003a,b, 2004; Fleischer, 2002,
2004; Hurth, 2003; Nir, 2001), that are subject to significant hadronic uncertainties. In particular, the extraction of
weak phases requires generally rather involved strategies using often certain assumptions about the strong dynamics
(Anikeev et al., 2001; Ball et al., 2000; Harrison and Quinn, 1998). Only a handful of strategies, which we will briefly
review in Section VIII, allow direct determinations of weak phases from non-leptonic B decays without practically
any hadronic uncertainties.

Returning to (I.1), an important consequence of this relation is the following one (Buras and Fleischer, 2001): for
a given sin 2β extracted from aψKS

, the measurement of Br(K+ → π+νν̄) determines up to a two-fold ambiguity the
value of Br(KL → π0νν̄), independent of any new parameters present in the MFV models. Consequently, measuring
Br(KL → π0νν̄) will either select one of the possible values or rule out all MFV models. A spectacular violation of
this relation has been recently analyzed (Buras et al., 2004c,d) in the context of a new physics scenario with enhanced
Z0 penguins carrying a new CP-violating phase (Atwood and Hiller, 2003; Buchalla et al., 2001; Buras et al., 2000,
1998; Buras and Silvestrini, 1999; Colangelo and Isidori, 1998; Nir and Worah, 1998).

Another important virtue of K+ → π+νν̄ is a theoretically clean determination of |Vtd| or equivalently of the
length Rt in the unitarity triangle. This determination is only subject to theoretical uncertainties in the charm sector,
that amount at present to ±4% and can be reduced down to 1% in the future by including NNLO corrections. The
remaining parametric uncertainties in the determination of |Vtd| related to |Vcb| and mt should be soon reduced to
the 1-2% level. Finally, the decay KL → π0νν̄ offers the cleanest determination of the Jarlskog CP-invariant JCP
(Buchalla and Buras, 1996) or equivalently of the area of the unrescaled unitarity triangle that cannot be matched
by any B decay. With the improved precision on mt and |Vcb|, also a precise measurement of the height η̄ of the
unitarity triangle becomes possible.

The clean determinations of sin 2β, |Vtd|, Rt, JCP , and of the UT in general, as well as the test of the MFV relation
(I.1) and generally of the physics beyond the SM, put these two decays in the class of “golden decays”, essentially
on the same level as the determination of sin 2β through the asymmetry aψKS

and certain clean strategies for the
determination of the angle γ in the UT (Ali, 2003; Buchalla, 2003; Buras, 2003a,b, 2004; Fleischer, 2002, 2004; Hurth,
2003; Nir, 2001), that will be available at LHC (Ball et al., 2000) and BTeV (Anikeev et al., 2001). We will discuss
briefly the latter in Section VIII. Therefore precise measurements of Br(K+ → π+νν̄) and Br(KL → π0νν̄) are of
utmost importance and should be aimed for, even when realizing that the determination of the branching ratios in
question with an accuracy of 5% is extremely challenging.

Our detailed analysis results in the following predictions for the branching ratios within the SM

Br(K+ → π+νν̄)SM = (7.8± 1.2) · 10−11, (I.2)

Br(KL → π0νν̄)SM = (3.0± 0.6) · 10−11. (I.3)

This is an accuracy of ±15% and ±20%, respectively. We will demonstrate that a NNLO calculation of the charm
contribution to K+ → π+νν̄ and further progress on the determination of the CKM parameters coming in the next



4

few years dominantly from BaBar, Belle, Tevatron and later from LHC and BTeV, should allow eventually predictions
for Br(K+ → π+νν̄) and Br(KL → π0νν̄) with the uncertainties of ±5% or better. This accuracy cannot be matched
by any other rare decay branching ratio in the field of meson decays.

On the experimental side the AGS E787 collaboration at Brookhaven was the first to observe the decayK+ → π+νν̄
(Adler et al., 1997, 2000). The resulting branching ratio based on two events and published in 2002 was (Adler et al.,
2002, 2004)

Br(K+ → π+νν̄) = (15.7+17.5
−8.2 ) · 10−11 (2002). (I.4)

Very recently a new K+ → π+νν̄ experiment, AGS E949 (Anisimovsky et al., 2004), released its first results that are
based on the 2002 running. One additional event has been observed. Including the result of AGS E787 the present
branching ratio reads

Br(K+ → π+νν̄) = (14.7+13.0
−8.9 ) · 10−11 (2004). (I.5)

It is not clear, at present, how this result will be improved in the coming years but AGS E949 should be able to
collect in total 10 SM events. One should also hope that the efforts at Fermilab around the CKM experiment (CKM
Experiment), the corresponding efforts at CERN around the NA48 collaboration (NA48 Collaboration) and at JPARC
in Japan (JPARC) will provide additional 50-100 events in the next five years.

The situation is different for KL → π0νν̄. While the present upper bound on its branching ratio from KTeV
(Alavi-Harati et al., 2000b),

Br(KL → π0νν̄) < 5.9 · 10−7, (I.6)

is about four orders of magnitude above the SM expectation, the prospects for an accurate measurement ofKL → π0νν̄
appear almost better than for K+ → π+νν̄ from the present perspective.

Indeed, a KL → π0νν̄ experiment at KEK, E391a (E391 Experiment), which started taking data this year, should
in its first stage improve the bound in (I.6) by three orders of magnitude. While this is insufficient to reach the SM
level, a few events could be observed if Br(KL → π0νν̄) turned out to be by one order of magnitude larger due to
new physics contributions.

Next, a very interesting experiment at Brookhaven, KOPIO (Bryman, 2002; Littenberg, 2002), should in due time
provide 40-60 events of KL → π0νν̄ at the SM level. Finally, the second stage of the E391 experiment could, using
the high intensity 50 GeV/c proton beam from JPARC (JPARC), provide roughly 1000 SM events of KL → π0νν̄,
which would be truly fantastic! Perspectives of a search for KL → π0νν̄ at a Φ-factory have been discussed in (Bossi
et al., 1999). Further reviews on experimental prospects for K → πνν̄ can be found in (Barker and Kettell, 2000;
Belyaev et al., 2001; Diwan, 2002).

Parallel to these efforts, during the coming years we will certainly witness unprecedented tests of the CKM picture
of flavour and CP violation in B decays that will be available at SLAC, KEK, Tevatron and in the second half of
this decade at CERN. The most prominent of these tests will involve the B0

s − B̄0
s mixing mass difference ∆Ms and

a number of clean strategies for the determination of the angles γ and β in the UT that will involve B±, B0
d and B0

s

two-body non-leptonic decays.
These efforts will be accompanied by the studies of CP violation in decays like B → ππ, B → πK and B → KK,

that in spite of being less theoretically clean than the quantities considered in the present review, will certainly
contribute to the tests of the CKM paradigm (Cabibbo, 1963; Kobayashi and Maskawa, 1973). In addition, rare
decays like B → Xsγ, B → Xs,dµ

+µ−, Bs,d → µ+µ−, B → Xs,dνν̄, KL → π0e+e− and KL → π0µ+µ− will play an
important role.

In 1994, two detailed analyses of K+ → π+νν̄, KL → π0νν̄, B0
s − B̄0

s mixing and of CP asymmetries in B decays
have been presented in the anticipation of future precise measurements of several theoretically clean observables, that
could be used for a determination of the CKM matrix and of the unitarity triangle within the SM (Buras, 1994; Buras
et al., 1994b). These analyses were very speculative as in 1994 even the top quark mass was unknown, none of the
observables listed above have been measured and the CKM elements |Vcb| and |Vub| were rather poorly known.

During the last ten years the situation changed significantly: the top quark mass and the angle β in the UT have
been rather precisely measured and three events of K+ → π+νν̄ have been observed. We are still waiting for the
observation of the B0

s − B̄0
s mixing, KL → π0νν̄ and a direct measurement of the angle γ in the UT, but now we are

rather confident that we will be awarded already in this decade.
This progress makes it possible to considerably improve the analyses of (Buras, 1994; Buras et al., 1994b) within

the SM and to generalize them to its simplest extensions. This is one of the goals of our review. We will see that the
decays K+ → π+νν̄ and KL → π0νν̄, as in 1994, play an important role in these investigations.
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In this context we would like to emphasize that new physics contributions in K+ → π+νν̄ and KL → π0νν̄, in
essentially all extensions of the SM,1 can be parametrized in a model-independent manner by just two parameters
(Buras et al., 1998), the magnitude of the short distance function X (Buras, 2003a,b, 2004) and its complex phase:

X = |X |eiθX (I.7)

with |X | = X(xt) and θX = 0 in the SM. The important virtues of the K → πνν̄ system here are the following ones

• |X | and θX can be extracted from Br(KL → π0νν̄) and Br(K+ → π+νν̄) without any hadronic uncertainties,

• As in most extensions of the SM, the function X is governed by the Z0 penguins with top quark and new particle
exchanges2, the determination of the function X is actually the determination of the Z0 penguins that enter
other decays.

• The theoretical cleanness of this determination cannot be matched by any other decay. For instance, the decays
like B → Xs,dµ

+µ− and Bs,d → µ+µ−, that can also be used for this purpose, are subject to theoretical
uncertainties of 10% or more.

Already at this stage we would like to emphasize that the clean theoretical character of these decays remains valid
in essentially all extensions of the SM, whereas this is generally not the case for non-leptonic two-body B decays used
to determine the CKM parameters through CP asymmetries and/or other strategies. While several mixing induced
CP asymmetries in non-leptonic B decays within the SM are essentially free from hadronic uncertainties, as the latter
cancel out due to the dominance of a single CKM amplitude, this is often not the case in extensions of the SM in which
the amplitudes receive new contributions with different weak phases implying no cancellation of hadronic uncertainties
in the relevant observables. A classic example of this situation, as stressed in (Ciuchini and Silvestrini, 2002), is the
mixing induced CP asymmetry in B0

d(B̄
0
d) → φKS decays that within the SM measures the angle β in the UT with

very small hadronic uncertainties. As soon as the extensions of the SM are considered in which new operators and
new weak phases are present, the mixing induced asymmetry aφKS

suffers from potential hadronic uncertainties that
make the determination of the relevant parameters problematic unless the hadronic matrix elements can be calculated
with sufficient precision. This is evident from the many papers on the anomaly in B0

d(B̄
0
d) → φKS decays of which

the subset is given in (Ciuchini and Silvestrini, 2002; Datta, 2002; Fleischer and Mannel, 2001; Grossman et al., 2003;
Hiller, 2002; Khalil and Kou, 2003; Raidal, 2002).

The goal of the present review is to collect the relevant formulae for the decays K+ → π+νν̄ and KL → π0νν̄ and
analyze their theoretical and parametric uncertainties. In addition to known expressions we derive new ones that
should allow transparent tests of the SM and of its extensions. While our presentation is centered around the SM,
we also discuss models with MFV and scenarios with new complex phases in enhanced Z0 penguins and/or B0

d − B̄0
d

mixing. We also give a brief review of other models. Moreover, we investigate the interplay between the K → πνν̄
complex , the B0

d,s−B̄0
d,s mass differences ∆Md,s and the angles β and γ in the unitarity triangle that can be measured

precisely in two body B decays one day.
Our review is organized as follows. Sections II and III can be considered as a compendium of formulae for the

decays K+ → π+νν̄ and KL → π0νν̄ within the SM. We also give there the formulae for the CKM factors and the
UT that are relevant for us. In particular in Section III we investigate the interplay between K → πνν̄, the mass
differences ∆Md,s and the angles β and γ. In Section IV a detailed numerical analysis of the formulae of Sections II
and III is presented. In Section V we indicate how the discussion of previous sections is generalized to the class of the
MFV models. In Section VI our discussion is further generalized to three scenarios involving new complex phases:
a scenario with new physics entering only Z0 penguins, a scenario with new physics entering only B0

d − B̄0
d mixing

and a hybrid scenario in which both Z0 penguins and B0
d − B̄0

d mixing are affected by new physics. Here we derive a
number of expressions that were not presented in the literature so far and illustrate how the new phases, and other
new physics parameters can be determined by means of the (Rb, γ) strategy (Buras et al., 2003c) and the related
reference unitarity triangle (Barenboim et al., 1999; Cohen et al., 1997; Goto et al., 1996; Grossman et al., 1997).
In Section VII we give a brief review of the existing results for both decays within other extensions of the SM, like
supersymmetric models, models with extra dimensions, models with lepton-flavour mixing and other selected models
considered in the literature. In Section VIII we compare the K → πνν̄ decays with other K and B decays used for the
determination of the CKM phases and of the UT with respect to the theoretical cleanness. In Section IX we describe
briefly the long distance contributions. Finally, in Section X we summarize our results and give a brief outlook for
the future.

1 Exceptions will be briefly discussed in Section VII.
2 Box diagrams are only relevant in the SM and can be calculated with high accuracy.
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II. BASIC FORMULAE

A. Preliminaries

In this section we will collect the formulae for the branching ratios for the decays K+ → π+νν̄ and KL → π0νν̄
that constitute the basis for the rest of our review. We will also give the values of the relevant parameters as well as
recall the formulae related to the CKM matrix and the unitarity triangle that are relevant for our analysis. Clearly,
many formulae listed below have been presented previously in the literature, in particular in (Battaglia et al., 2003;
Buchalla and Buras, 1996, 1999; Buchalla et al., 1996a; Buras, 1998, 2003a,b, 2004; Buras et al., 2003c). Still the
collection of them at one place and the addition of new ones should be useful for future investigations.

The effective Hamiltonian relevant for K+ → π+νν̄ and KL → π0νν̄ decays can be written in the SM as follows
(Buchalla and Buras, 1994a, 1999)

HSM
eff =

GF√
2

α

2π sin2 θw

∑

l=e,µ,τ

(

V ∗
csVcdX

l
NL + V ∗

tsVtdX(xt)
)

(s̄d)V−A(ν̄lνl)V−A (II.1)

with all symbols defined below. It is obtained from the relevant Z0 penguin and box diagrams with the up, charm and
top quark exchanges shown in Fig. 1 and includes QCD corrections at the NLO level (Buchalla and Buras, 1993a,b,
1994a, 1999; Misiak and Urban, 1999). The presence of up quark contributions is only needed for the GIM mechanism
to work but otherwise only the internal charm and top contributions matter. The relevance of these contributions in
each decay is spelled out below.

The index l = e, µ, τ denotes the lepton flavour. The dependence on the charged lepton mass resulting from the
box diagrams is negligible for the top contribution. In the charm sector this is the case only for the electron and the
muon but not for the τ -lepton. In what follows we give the branching ratios that follow from (II.1).

B. K+ → π+νν̄

The branching ratio forK+ → π+νν̄ in the SM is dominated by Z0 penguin diagrams with a significant contribution
from the box diagrams. Summing over three neutrino flavours, it can be written as follows (Buchalla and Buras, 1999)

Br(K+ → π+νν̄) = κ+ ·
[

(

Imλt
λ5

X(xt)

)2

+

(

Reλc
λ

Pc(X) +
Reλt
λ5

X(xt)

)2
]

, (II.2)

κ+ = rK+

3α2Br(K+ → π0e+ν)

2π2 sin4 θw
λ8 = (4.84± 0.06) · 10−11

[

λ

0.224

]8

. (II.3)

An explicit derivation of (II.2) can be found in (Buras, 1998). Here xt = m2
t/M

2
W , λi = V ∗

isVid are the CKM
factors discussed below and rK+ = 0.901 summarizes isospin breaking corrections in relating K+ → π+νν̄ to the well
measured leading decay K+ → π0e+ν (Marciano and Parsa, 1996). In obtaining the numerical value in (II.3) we have
used (Hagiwara et al., 2002)

sin2 θw = 0.231, α =
1

127.9
, Br(K+ → π0e+ν) = (4.87± 0.06) · 10−2 (II.4)

with the first two given in the MS scheme. Their errors are below 0.1% and can be neglected. There is an issue
related to sin2 θw that although very well measured in a given renormalization scheme, is a scheme dependent quantity
with the scheme dependence only removed by considering higher order electroweak effects in K → πνν̄. An analysis
of such effects in the large mt limit (Buchalla and Buras, 1998) shows that in principle they could introduce a ±5%
correction in the K → πνν̄ branching ratios but with the MS definition of sin2 θw, these higher order electroweak
corrections are found below 2% and can also be safely neglected. Similar comments apply to α. This pattern of higher
order electroweak corrections is also found in the B0

d,s − B̄0
d,s mixing (Gambino et al., 1999).

The apparent large sensitivity of Br(K+ → π+νν̄) to λ is spurious as Pc(X) ∼ λ−4 and the dependence on λ in
(II.3) cancels the one in (II.2) to a large extent. However, basically for aesthetic reasons it is useful to write first these
formulae as given above. In doing this it is essential to keep track of the λ dependence as it is hidden in Pc(X) (see
(II.12)) and changing λ while keeping Pc(X) fixed would give wrong results. For later purposes we will also introduce

κ̄+ =
κ+

λ8
= (7.64± 0.09) · 10−6. (II.5)
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FIG. 1 The penguin and box diagrams contributing to K+ → π+νν̄. For KL → π0νν̄ only the spectator quark is changed from
u to d.

The function X(xt) relevant for the top part is given by

X(xt) = X0(xt) +
αs(mt)

4π
X1(xt) = ηX ·X0(xt), ηX = 0.995, (II.6)

where

X0(xt) =
xt
8

[

−2 + xt
1− xt

+
3xt − 6

(1− xt)2
lnxt

]

(II.7)

describes the contribution of Z0 penguin diagrams and box diagrams without the QCD corrections (Buchalla et al.,
1991; Inami and Lim, 1981) and the second term stands for the QCD correction (Buchalla and Buras, 1993a,b, 1999;
Misiak and Urban, 1999) with

X1(xt) = − 29xt − x2
t − 4x3

t

3(1− xt)2
− xt + 9x2

t − x3
t − x4

t

(1− xt)3
lnxt
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+
8xt + 4x2

t + x3
t − x4

t

2(1− xt)3
ln2 xt −

4xt − x3
t

(1− xt)2
L2(1 − xt)

+ 8x
∂X0(xt)

∂xt
lnxµ (II.8)

where xµ = µ2
t/M

2
W , µt = O(mt) and

L2(1− xt) =

∫ xt

1

dt
ln t

1− t . (II.9)

The µt-dependence in the last term in (II.8) cancels to the order considered the µt-dependence of the leading term
X0(x(µt)). The leftover µt-dependence in X(xt) is below 1%. The factor ηX summarizes the NLO corrections
represented by the second term in (II.6). With mt ≡ mt(mt) the QCD factor ηX is practically independent of mt and
αs(MZ) and is very close to unity. Varying mt(mt) from 150 GeV to 180 GeV changes ηX by at most 0.1%.

The uncertainty in X(xt) is then fully dominated by the experimental error in mt. With the MS top-quark mass 3

mt(mt) = (168.1± 4.1)GeV, (II.10)

corresponding to the most recent mpole
t = (178.0± 4.3)GeV (Azzi et al., 2004), one has

X(xt) = 1.529± 0.042. (II.11)

X(xt) increases with mt roughly as m1.15
t . After the Tevatron era the error on mt should decrease below ±2 GeV,

implying the error of ±0.02 in X(xt) that can be neglected for all practical purposes.
In obtaining the MS top-quark mass given above we have used the relation between this mass and the pole

mass of (Melnikov and Ritbergen, 2000) that includes one- two- and three-loop contributions. Taking only one-loop
contributions would result in mt(mt) = (169.8± 4.1)GeV and X(xt) = 1.55± 0.04. As the determination of αs(MZ)
from various processes includes higher orders in αs, it is more appropriate in our opinion to use the value in (II.10)
even if the branching ratios for K → πνν̄ include only NLO effects.

The parameter Pc(X) summarizes the charm contribution and is defined through

Pc(X) =
1

λ4

[

2

3
Xe

NL +
1

3
Xτ

NL

]

(II.12)

where the functions X l
NL result from the NLO calculation (Buchalla and Buras, 1994a, 1999) and are recalled for

completeness in Appendix A. The index “l” distinguishes between the charged lepton flavours in the box diagrams.
This distinction is irrelevant in the top contribution due to mt ≫ ml but is relevant in the charm contribution as
mτ > mc. The inclusion of NLO corrections reduced considerably the large µc dependence (with µc = O(mc)) present
in the leading order expressions for the charm contribution (Dib et al., 1991; Ellis and Hagelin, 1983; Vainshtein et al.,
1977). Varying µc in the range 1 GeV ≤ µc ≤ 3 GeV changes X l

NL by roughly 24% at NLO to be compared to 56%
in the leading order.

The net effect of QCD corrections is to suppress the charm contribution by roughly 30%. For our purposes we need
only Pc(X). In table I we give its values for different αs(MZ) and mc ≡ mc(mc). The chosen range for mc(mc) is
in the ballpark of the most recent estimates. For instance mc(mc) = 1.304(27), 1.301(34) and 1.29(7) (all in GeV)

have been found from Re
+e−(s) (Kühn and Steinhauser, 2001), quenched lattice QCD (Rolf and Sint, 2002) and

charmonium sum rules (Hoang and Jamin, 2004), respectively. Further references can be found in these papers and
in (Battaglia et al., 2003).

Finally, in table II we show the dependence of Pc(X) on αs(MZ) and µc at fixed mc(mc) = 1.30 GeV. In an
Appendix we give more details on how the values in tables I and II have been obtained.

Restricting the three parameters involved to the ranges

1.25 GeV ≤ mc(mc) ≤ 1.35 GeV, 1.0 GeV ≤ µc ≤ 3 GeV, (II.13)

0.116 ≤ αs(MZ) ≤ 0.120 (II.14)

3 We thank M. Jamin for discussions on this subject.
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TABLE I The parameter Pc(X) for λ = 0.224 and various αs(MZ) and mc(mc).

Pc(X)

αs(MZ) \ mc [ GeV] 1.25 1.30 1.35

0.115 0.371 0.403 0.436

0.116 0.366 0.399 0.432

0.117 0.362 0.394 0.427

0.118 0.357 0.389 0.422

0.119 0.352 0.384 0.417

0.120 0.347 0.379 0.412

0.121 0.341 0.373 0.406

and setting λ = 0.224 we arrive at

Pc(X) = 0.389± 0.033mc
± 0.045µc

± 0.010αs
, (II.15)

where the errors correspond to mc(mc), µc and αs(MZ), respectively.
We observe that the error in Pc(X) is dominated by the left-over scale uncertainty, implying that a calculation

of Pc(X) at the NNLO level is certainly desirable. The uncertainty due to mc is smaller but still significant. On
the other hand, the uncertainty due to αs is small. In principle one could add the errors in (II.15) linearly, which
would result in a total error of ±0.088. We think that this estimate would be too conservative. Adding the errors in
quadrature gives ±0.057. This could be, on the other hand, too optimistic, since the uncertainties are not statistically
distributed. Therefore, as the final result for Pc(X) we quote

Pc(X) = 0.39± 0.07 (II.16)

that we will use in the rest of our review. This agrees for the same value of λ = 0.224 with the values used in the
literature except for the increase of the error from 0.06 to 0.07. We anticipate that all long distance uncertainties,
that are well below the error in (II.16), are already included in the error quoted above.

TABLE II The parameter Pc(X) for λ = 0.224 and various αs(MZ) and µc with mc(mc) = 1.30 GeV.

Pc(X)

αs(MZ) \ µc [ GeV] 1.0 1.3 2.0 3.0

0.115 0.423 0.403 0.371 0.343

0.116 0.420 0.399 0.365 0.337

0.117 0.418 0.394 0.359 0.331

0.118 0.415 0.389 0.353 0.324

0.119 0.412 0.384 0.346 0.317

0.120 0.409 0.379 0.339 0.309

0.121 0.405 0.373 0.332 0.302

We expect that a NNLO calculation would reduce the error in Pc(X) due to µc by a factor of 2-3 and the reduction
of the error in αs(MZ) to ±0.001 will decrease the corresponding error to 0.005, making it negligible. Concerning the
error due to mc(mc), it should be remarked that increasing the error in mc(mc) to ±70 MeV would increase the first
error in (II.15) to 0.047, whereas its decrease to ±30 MeV would decrease it to 0.020. More generally we have to a
good approximation

σ(Pc(X))mc
=

[

0.67

GeV

]

σ(mc(mc)). (II.17)

This exercise shows that after a NNLO analysis has been performed, the main uncertainty in Pc(X) will be due to
mc. From the present perspective, unless some important advances in the determination of mc(mc) will be made, it
will be very difficult to decrease the error on Pc(X) below ±0.03, although ±0.02 cannot be fully excluded. We will
use this information in our numerical analysis in Section IV.
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C. KL → π0νν̄

The neutrino pair produced by HSM
eff in (II.1) is a CP eigenstate with positive eigenvalue. Consequently, within the

approximation of keeping only operators of dimension six, as done in (II.1), the decay KL → π0νν̄ proceeds entirely
through CP violation (Littenberg, 1989). However, as pointed out in (Buchalla and Isidori, 1998), even in the SM
there are CP-conserving contributions to KL → π0νν̄, that are generated only by local operators of d ≥ 8 or by long
distance effects. Fortunately, these effects are by a factor of 105 smaller than the leading CP-violating contribution
and can be safely neglected (Buchalla and Isidori, 1998). As we will discuss in Section VII, the situation can be in
principle very different beyond the SM.

The branching ratio for KL → π0νν̄ in the SM is then fully dominated by the diagrams with internal top exchanges
with the charm contribution well below 1%. It can be written then as follows (Buchalla and Buras, 1996; Buchalla
et al., 1996a; Buras, 1998)

Br(KL → π0νν̄) = κL ·
(

Imλt
λ5

X(xt)

)2

(II.18)

κL = κ+
rKL

rK+

τ(KL)

τ(K+)
= (2.12± 0.03) · 10−10

[

λ

0.224

]8

(II.19)

where we used τ(KL)/τ(K+) = 4.17 ± 0.03 and have summed over three neutrino flavours. An explicit derivation
of (II.18) can be found in (Buras, 1998). Here rKL

= 0.944 is the isospin breaking correction from (Marciano and
Parsa, 1996) with κ+ given in (II.3). Due to the absence of Pc(X) in (II.18), Br(KL → π0νν̄) has essentially no
theoretical uncertainties and is only affected by parametric uncertainties coming from mt, Imλt and κL. They should
be decreased significantly in the coming years so that a precise prediction for Br(KL → π0νν̄) should be available
in this decade. On the other hand, as discussed below, once this branching ratio has been measured, Imλt can be in
principle determined with exceptional precision not matched by any other decay (Buchalla and Buras, 1996).

D. KS → π0νν̄

Next, mainly for completeness, we give the expression for Br(KS → π0νν̄), that, due to τ(KS) ≪ τ(KL), is
suppressed by roughly 2 orders of magnitude relative to Br(KL → π0νν̄). We have (Bossi et al., 1999)

Br(KS → π0νν̄) = κS ·
(

Reλc
λ

Pc(X) +
Reλt
λ5

X(xt)

)2

, (II.20)

κS = κL
τ(KS)

τ(KL)
= (3.66± 0.05) · 10−13

[

λ

0.224

]8

. (II.21)

Introducing the “reduced” branching ratio

B3 =
Br(KS → π0νν̄)

κS
(II.22)

and analogous ratios B1 and B2 for K+ → π+νν̄ and KL → π0νν̄ given in (III.24) we find a simple relation between
the three K → πνν̄ decays

B1 = B2 +B3. (II.23)

We would like to emphasize that, while Br(KL → π0νν̄) being only sensitive to Imλt provides a direct determination
of η̄, Br(KS → π0νν̄) being only sensitive to Reλt provides a direct determination of ¯̺. The latter determination is
not as clean as the one of η̄ from KL → π0νν̄ due to the presence of the charm contribution in (II.20). However, it is
much cleaner than the corresponding determination of ¯̺ from KL → µ+µ−. Unfortunately, the tiny branching ratio
Br(KS → π0νν̄) ≈ 5 · 10−13 will not allow this determination in a foreseeable future. Therefore we will not consider
KS → π0νν̄ in the rest of our review. Still one should not forget that the presence of another theoretically clean
observable would be very useful in testing the extensions of the SM. Interesting discussions of the complex KL → π0νν̄
and KS → π0νν̄ and its analogies to the studies of ε′/ε can be found in (Bossi et al., 1999; D’Ambrosio et al., 1994).
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E. CKM Parameters

1. Unitarity Triangle, Imλt and Reλt

Concerning the CKM parameters, we will use in our numerical analysis the Wolfenstein parametrization (Wolfen-
stein, 1983), generalized to include higher orders in λ ≡ |Vus| (Buras et al., 1994b). This turns out to be very useful
in making the structure of various formulae transparent and gives results very close to the ones obtained by means of
the exact standard parametrization (Chau and Keung, 1984; Hagiwara et al., 2002). The basic parameters are then

λ, A =
|Vcb|
λ2

, ¯̺ = ̺(1− λ2

2
), η̄ = η(1− λ2

2
) (II.24)

with ̺ and η being the usual Wolfenstein parameters (Wolfenstein, 1983). The parameters ¯̺ and η̄, introduced in
(Buras et al., 1994b), are particularly useful as they describe the apex of the standard UT as shown in Fig. 2. More
details on the unitarity triangle and the generalized Wolfenstein parametrization can be found in (Battaglia et al.,
2003; Buras, 2003a,b, 2004; Buras et al., 1994b). Below, we only recall certain expressions that we need in the course
of our discussion.

b
t

βγ

α

C=(0,0) B=(1,0)

R
R

A=(ρ,η)

FIG. 2 Unitarity Triangle.

Parallel to the use of the parameters in (II.24) it will turn out useful to express the CKM elements Vtd and Vts as
follows (Buras et al., 2004c)

Vtd = ARtλ
3e−iβ , Vts = −|Vts|e−iβs , (II.25)

with tanβs ≈ −λ2η̄. The smallness of βs follows from the CKM phase conventions and the unitarity of the CKM
matrix. Consequently it is valid beyond the SM if three generation unitarity is assumed. Rt and β are defined in
Fig. 2.

We have then

λt ≡ V ∗
tsVtd = −r̃λ|Vcb|2Rte−iβeiβs with r̃ =

∣

∣

∣

∣

Vts
Vcb

∣

∣

∣

∣

=
√

1 + λ2(2¯̺− 1) ≈ 0.985, (II.26)

where in order to avoid high powers of λ we expressed the parameter A through |Vcb|. Consequently

Imλt = r̃λ|Vcb|2Rt sin(βeff), Reλt = −r̃λ|Vcb|2Rt cos(βeff) (II.27)

with βeff = β − βs.
Alternatively, using the parameters in (II.24), one has (Buras et al., 1994b)

Imλt = ηλ|Vcb|2, Reλt = −(1− λ2

2
)λ|Vcb|2(1 − ¯̺) (II.28)

Reλc = −λ(1− λ2

2
) . (II.29)

The expressions for Imλt and Reλc given here represent to an accuracy of 0.2% the exact formulae obtained using
the standard parametrization. The expression for Reλt in (II.28) deviates by at most 0.5% from the exact formula in
the full range of parameters considered. After inserting the expressions (II.28) and (II.29) in the exact formulae for
quantities of interest a further expansion in λ should not be made.
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2. Leading Strategies for ( ¯̺, η̄)

Next, we have the following useful relations, that correspond to the best strategies for the determination of (¯̺, η̄)
considered in (Buras et al., 2003c):

(Rt, β) Strategy:

¯̺ = 1−Rt cosβ, η̄ = Rt sinβ (II.30)

with Rt determined through (II.44) below and β through aψKS
. In this strategy, Rb and γ are given by

Rb =
√

1 +R2
t − 2Rt cosβ, cotγ =

1−Rt cosβ

Rt sinβ
. (II.31)

(Rb, γ) Strategy:

¯̺ = Rb cos γ, η̄ = Rb sinγ (II.32)

with γ (see Fig. 2), determined through clean strategies in tree dominated B-decays (Ali, 2003; Anikeev et al., 2001;
Ball et al., 2000; Buchalla, 2003; Buras, 2003a,b, 2004; Fleischer, 2002, 2004; Hurth, 2003; Nir, 2001). In this strategy,
Rt and β are given by

Rt =
√

1 +R2
b − 2Rb cos γ, cotβ =

1−Rb cos γ

Rb sinγ
. (II.33)

(β, γ) Strategy:
Formulae in (II.30) and

Rt =
sin γ

sin(β + γ)
(II.34)

with β and γ determined through aψKS
and clean strategies for γ as in (II.32). In this strategy, the length Rb and

|Vub/Vcb| can be determined through

Rb =
sinβ

sin(β + γ)
,

∣

∣

∣

∣

Vub
Vcb

∣

∣

∣

∣

=

(

λ

1− λ2/2

)

Rb. (II.35)

(η̄, γ) Strategy:

¯̺ =
η̄

tan γ
(II.36)

with η̄ determined for instance through Br(KL → π0νν̄) as discussed in Section III and γ as in the two strategies
above.

As demonstrated in (Buras et al., 2003c), the (Rt, β) strategy will be very useful as soon as the B0
s − B̄0

s mixing
mass difference ∆Ms has been measured. However, the remaining three strategies turn out to be more efficient in
determining (¯̺, η̄). The strategies (β, γ) and (η̄, γ) are theoretically cleanest as β and γ can be measured precisely
in two body B decays one day and η̄ can be extracted from Br(KL → π0νν̄) subject only to uncertainty in |Vcb|.
Combining these two strategies offers a precise determination of the CKM matrix including |Vcb| and |Vub| (Buras,
1994). On the other hand, these two strategies are subject to uncertainties coming from new physics that can enter
through β and η̄. The angle γ, the phase of Vub, can be determined in principle without these uncertainties.

The strategy (Rb, γ), on the other hand, while subject to hadronic uncertainties in the determination of Rb, is not
polluted by new physics contributions as, in addition to γ, also Rb can be determined from tree level decays. This
strategy results in the so-called reference unitarity triangle as proposed and discussed in (Barenboim et al., 1999;
Cohen et al., 1997; Goto et al., 1996; Grossman et al., 1997). We will return to all these strategies in the course of
our presentation.
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3. Constraints from the Standard Analysis of the UT

Other useful expressions that represent the constraints from the CP-violating parameter εK and ∆Ms,d, that
parametrize the size of B0

s,d − B̄0
s,d mixings are as follows.

First we have

εK = −CεB̂KImλt

{

λ4ReλcPc(ε) + Reλtη
QCD
2 S0(xt)

}

eiπ/4 , (II.37)

where S0(xt) = 2.42 ± 0.09 results from ∆S = 2 box diagrams and the numerical constant Cε is given by (MW =
80.4 GeV)

Cε =
G2

FF
2
KmKM

2
W

6
√

2π2∆MK

= 3.837 · 104 . (II.38)

Next (Herrlich and Nierste, 1994, 1995, 1996; Jamin and Nierste, 2004),

Pc(ε) =
P̄c(ε)

λ4
= (0.29± 0.07)

[

0.224

λ

]4

, P̄c(ε) = (7.3± 1.7) · 10−4, (II.39)

ηQCD2 = 0.574±0.003 (Buchalla et al., 1996a; Buras, 1998; Buras et al., 1990) and B̂K is a non-perturbative parameter.
In obtaining (II.37) a small term amounting to at most 5% correction to εK has been neglected. This is justified in

view of other uncertainties, in particular those connected with B̂K but in the future should be taken into account
(Andriyash et al., 2003).

Comparing (II.37) with the experimental value for εK (Hagiwara et al., 2002)

(εK)exp = (2.280± 0.013) · 10−3 exp iπ/4, (II.40)

one obtains a constraint on the UT that with the help of (II.28) and (II.29) can be cast into

η̄
[

(1 − ¯̺)|Vcb|2ηQCD2 S0(xt) + P̄c(ε)
]

|Vcb|2B̂K = 1.184 · 10−6

[

0.224

λ

]2

. (II.41)

Next, the constraint from ∆Md implies

Rt =
1

λ

|Vtd|
|Vcb|

= 0.834 ·
[ |Vtd|
7.75 · 10−3

] [

0.0415

|Vcb|

] [

0.224

λ

]

, (II.42)

|Vtd| = 7.75 · 10−3





230 MeV
√

B̂Bd
FBd





√

∆Md

0.50/ps

√

0.55

ηQCDB

√

2.40

S0(xt)
. (II.43)

Here

√

B̂Bd
FBd

is a non-perturbative parameter and ηQCDB = 0.551± 0.003 the QCD correction (Buras et al., 1990;

Urban et al., 1998).
Finally, the simultaneous use of ∆Md and ∆Ms gives

Rt = 0.920 r̃

[

ξ

1.24

] [

0.224

λ

]

√

18.4/ps

∆Ms

√

∆Md

0.50/ps
, ξ =

√

B̂Bs
FBs

√

B̂Bd
FBd

(II.44)

with r̃ defined in (II.26) and ξ standing for a nonperturbative parameter that is subject to smaller theoretical uncer-

tainties than the individual

√

B̂Bd
FBd

and

√

B̂Bs
FBs

.

The main uncertainties in these constraints originate in the theoretical uncertainties in B̂K and
√

B̂dFBd
and to a

lesser extent in ξ (Battaglia et al., 2003):

B̂K = 0.86± 0.15,

√

B̂dFBd
= (235+33

−41) MeV, ξ = 1.24± 0.08 . (II.45)
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The QCD sum rules results for the parameters in question are similar and can be found in (Battaglia et al., 2003).
Finally (Battaglia et al., 2003)

∆Md = (0.503± 0.006)/ps, ∆Ms > 14.4/ps at 95% C.L. (II.46)

Extensive discussion of the formulae (II.37), (II.41), (II.43) and (II.44) can be found in (Battaglia et al., 2003). For
our numerical analysis, we will use (Battaglia et al., 2003)

λ = 0.2240± 0.0036, A = 0.827± 0.016, |Vcb| = (41.5± 0.8) · 10−3, (II.47)

∣

∣

∣

∣

Vub
Vcb

∣

∣

∣

∣

= 0.092± 0.014, Rb = 0.40± 0.06 (II.48)

β = (23.7± 2.1)◦, βs = −1◦ (II.49)

with the value of β determined from measurements of the time-dependent CP asymmetry aψKS
(t) that give (Abe

et al., 2002; Aubert et al., 2002a; Browder, 2004)

(sin 2β)ψKS
= 0.736± 0.049 . (II.50)

It should be emphasized that the inputs in (II.47)–(II.49) are independent from each other, except for βs and the
upper bound (Buras et al., 1994b)

(sin 2β)max = 2Rmax
b

√

1− (Rmax
b )2 or (sinβ)max = Rmax

b (II.51)

that both follow from the unitarity of the CKM matrix.

III. PHENOMENOLOGICAL APPLICATIONS IN THE SM

A. Preliminaries

During the last ten years several analyses of K → πνν̄ decays within the SM were presented, in particular in
(Buchalla and Buras, 1999; Buras, 2003a,b, 2004; D’Ambrosio and Isidori, 2002; Kettell et al., 2002). Moreover,
correlations with other decays have been pointed out (Bergmann and Perez, 2000, 2001; Buras et al., 2000; Buras
and Silvestrini, 1999). In this section we collect and update many of these formulae and derive a number of useful
expressions that are new. In the next section a detailed numerical analysis of these formulae will be presented. Unless
explicitely stated all the formulae below are given for λ = 0.224. The dependence on λ can easily be found from
the formulae of the previous section. When it is introduced, it is often useful to replace λ2A by |Vcb| to avoid high
powers of λ. On the whole, the issue of the error in λ in K → πνν̄ decays is really not an issue if changes are made
consistently in all places as emphasized before.

B. Unitarity Triangle and K+ → π+νν̄

1. Basic Formulae

Using (II.27) in (II.2) we obtain (Buras et al., 2004c)

Br(K+ → π+νν̄) = κ+

[

r̃2A4R2
tX

2(xt) + 2r̃P̄c(X)A2RtX(xt) cosβeff + P̄c(X)2
]

(III.1)

with βeff = β − βs, r̃ given in (II.26) and

P̄c(X) =

(

1− λ2

2

)

Pc(X). (III.2)

In the context of the unitarity triangle also the expression following from (II.2) and (II.28) is useful (Buras et al.,
1994b)

Br(K+ → π+νν̄) = κ̄+|Vcb|4X2(xt)
1

σ

[

(ση̄)2 + (̺c − ¯̺)2
]

, (III.3)
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where

σ =

(

1

1− λ2

2

)2

. (III.4)

The measured value of Br(K+ → π+νν̄) then determines an ellipse in the (¯̺, η̄) plane centered at (̺c, 0) (see Fig. 3)
with

̺c = 1 +
λ4Pc(X)

|Vcb|2X(xt)
(III.5)

and having the squared axes

¯̺2
1 = r20 , η̄2

1 =
(r0
σ

)2

, (III.6)

where

r20 =

[

σ · Br(K+ → π+νν̄)

κ̄+|Vcb|4X2(xt)

]

. (III.7)

Note that r0 depends only on the top contribution. The departure of ̺c from unity measures the relative importance
of the internal charm contributions. ̺c ≈ 1.37.

Imposing then the constraint from |Vub/Vcb| allows to determine ¯̺ and η̄ with

¯̺ =
1

1− σ2

(

̺c −
√

σ2̺2
c + (1 − σ2)(r20 − σ2R2

b)

)

, η̄ =
√

R2
b − ¯̺2 (III.8)

where η̄ is assumed to be positive. Consequently

R2
t = 1 +R2

b − 2¯̺, Vtd = Aλ3(1− ¯̺− iη̄), |Vtd| = Aλ3Rt. (III.9)

The determination of |Vtd| and of the unitarity triangle in this way requires the knowledge of |Vcb| (or A) and of
|Vub/Vcb|. Both values are subject to theoretical uncertainties present in the existing analyses of tree level decays
(Battaglia et al., 2003). Whereas the dependence on |Vub/Vcb| is rather weak, the very strong dependence of Br(K+ →
π+νν̄) on A or |Vcb|, as seen in (III.1) and (III.3), made in the past a precise prediction for this branching ratio and
the construction of the UT difficult. With the more accurate value of |Vcb| obtained recently (Battaglia et al., 2003)
and given in (II.47), the situation improved significantly. We will return to this in Section IV. The dependence of
Br(K+ → π+νν̄) on mt is also strong. However, mt is known already within ±2.3% and consequently the related
uncertainty in Br(K+ → π+νν̄) is substantially smaller than the corresponding uncertainty due to |Vcb|. Moreover,
in this decade the error on mt should be decreased down to ±1 GeV making this uncertainty negligible.

As |Vub/Vcb| is subject to theoretical uncertainties, a cleaner strategy is to use Br(K+ → π+νν̄) in conjunction
with β determined through the mixing induced CP asymmetry aψKS

. We will investigate this strategy in the next
section.

2. Br(K+ → π+νν̄), β, ∆Md/∆Ms or γ.

In (Buchalla and Buras, 1999) an upper bound on Br(K+ → π+νν̄) has been derived within the SM. This bound
depends only on |Vcb|, X , ξ and ∆Md/∆Ms. With the precise value for the angle β now available this bound can be
turned into a useful formula for Br(K+ → π+νν̄) (D’Ambrosio and Isidori, 2002) that expresses this branching ratio
in terms of theoretically clean observables. In the SM and any MFV model this formula reads:

Br(K+ → π+νν̄) = κ̄+ |Vcb|4X2

[

σR2
t sin2 β +

1

σ

(

Rt cosβ +
λ4Pc(X)

|Vcb|2X

)2
]

, (III.10)

with σ defined in (III.4) and κ̄+ given in (II.5). It can be considered as the fundamental formula for a correlation
between Br(K+ → π+νν̄), β and any observable used to determine Rt. This formula is theoretically very clean with
the uncertainties residing only in |Vcb| and Pc(X). However, when one relates Rt to some observable new uncertainties
could enter. In (Buchalla and Buras, 1999) and (D’Ambrosio and Isidori, 2002) it has been proposed to express Rt
through ∆Md/∆Ms by means of (II.44). This implies an additional uncertainty due to the value of ξ in (II.45).
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Here we would like to point out that if the strategy (β, γ) is used to determine Rt by means of (II.34), the resulting
formula that relates Br(K+ → π+νν̄), β and γ is even cleaner than the one that relates Br(K+ → π+νν̄), β and
∆Md/∆Ms. We have then

Br(K+ → π+νν̄) = κ̄+ |Vcb|4X2

[

σT 2
1 +

1

σ

(

T2 +
λ4Pc(X)

|Vcb|2X

)2
]

, (III.11)

where

T1 =
sinβ sin γ

sin(β + γ)
, T2 =

cosβ sin γ

sin(β + γ)
. (III.12)

Similarly, the following formulae for Rt could be used in conjunction with (III.10)

Rt =
r̃

λ

√

Br(B → Xdνν̄)

Br(B → Xsνν̄)
, (III.13)

Rt =
r̃

λ

√

τ(Bs)

τ(Bd)

mBs

mBd

[

FBs

FBd

]

√

Br(Bd → µ+µ−)

Br(Bs → µ+µ−)
. (III.14)

In particular, (III.13) is essentially free of hadronic uncertainties (Buchalla and Isidori, 1998) and (III.14), not involving

B̂Bs
/B̂Bd

, is a bit cleaner than (II.44).

C. KL → π0νν̄, η̄, Imλt and the (β, γ) Strategy

1. η̄ and Imλt

Using (II.18) and (II.27) we find

Br(KL → π0νν̄) = κLr̃
2A4R2

tX
2(xt) sin2 βeff . (III.15)

In the context of the unitarity triangle the expression following from (II.18) and (II.28) is useful:

Br(KL → π0νν̄) = κ̄Lη
2|Vcb|4X2(xt), κ̄L =

κL
λ8

= (3.34± 0.05) · 10−5 (III.16)

from which η̄ can be determined

η̄ = 0.351

√

3.34 · 10−5

κ̄L

[

1.53

X(xt)

] [

0.0415

|Vcb|

]2
√

Br(KL → π0νν̄)

3 · 10−11
. (III.17)

The determination of η̄ in this manner requires the knowledge of |Vcb| and mt. With the improved determination of
these two parameters a useful determination of η̄ should be possible.

On the other hand, the uncertainty due to |Vcb| is not present in the determination of Imλt as (Buchalla and Buras,
1996):

Imλt = 1.39 · 10−4

[

λ

0.224

]

√

3.34 · 10−5

κ̄L

[

1.53

X(xt)

]

√

Br(KL → π0νν̄)

3 · 10−11
. (III.18)

This formula offers the cleanest method to measure Imλt in the SM and all MFV models in which the function X
takes generally different values than X(xt). This determination is even better than the one with the help of the CP
asymmetries in B decays that require the knowledge of |Vcb| to determine Imλt. Measuring Br(KL → π0νν̄) with
10% accuracy allows to determine Imλt with an error of 5% (Buchalla and Buras, 1996; Buchalla et al., 1996a; Buras,
1998).

The importance of the precise measurement of Imλt is clear: the areas A∆ of all unitarity triangles are equal and
related to the measure of CP violation JCP (Jarlskog, 1985a,b):

|JCP| = 2A∆ = λ

(

1− λ2

2

)

|Imλt|. (III.19)
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2. A New “Golden Relation”

Next, in the spirit of the analysis in (Buras, 1994) we can use the clean CP asymmetries in B decays and determine
η̄ through the (β, γ) strategy. Using (II.30) and (II.34) in (III.17) we obtain a new “golden relation”

sinβ sin γ

sin(β + γ)
= 0.351

√

3.34 · 10−5

κ̄L

[

1.53

X(xt)

] [

0.0415

|Vcb|

]2
√

Br(KL → π0νν̄)

3 · 10−11
. (III.20)

This relation between β, γ and Br(KL → π0νν̄), is very clean and offers an excellent test of the SM and of its
extensions. Similarly to the “golden relation” in (I.1) it connects the observables in B decays with those in K decays.
Moreover, it has the following two important virtues:

• It allows to determine |X |;

|X | = F1(β, γ, |Vcb|, Br(KL)) (III.21)

with Br(KL) = Br(KL → π0νν̄). The analytic expression for the function F1 can easily be extracted from
(III.20).

• As X(xt) should be known with high precision once the error on mt has been decreased, the relation (III.20)
allows to determine |Vcb| with a remarkable precision (Buras, 1994)

|Vcb| = F2(β, γ,X,Br(KL)). (III.22)

The analytic formula for F2 can easily be obtained from (III.20).

At first sight one could question the usefulness of the determination of |Vcb| in this manner, since it is usually
determined from tree level B decays. On the other hand, one should realize that one determines here actually the
parameter A in the Wolfenstein parametrization that enters the elements Vub, Vcb, Vts and Vtd of the CKM matrix.
Moreover this determination of A benefits from the very weak dependence on Br(KL → π0νν̄), which is only with a
power of 0.25. The weak point of this determination of |Vcb| is the pollution from new physics that could enter through
the function X , whereas the standard determination of |Vcb| through tree level B decays is free from this dependence.
Still, a determination of |Vcb| that in precision can almost compete with the usual tree diagrams determinations and
is theoretically cleaner, is clearly of interest within the SM. We will give some numerical examples in Section IV.

D. Unitarity Triangle from K+ → π+νν̄ and KL → π0νν̄

The measurement of Br(K+ → π+νν̄) and Br(KL → π0νν̄) can determine the unitarity triangle completely (see
Fig. 3), providedmt and |Vcb| are known (Buchalla and Buras, 1994b). Using these two branching ratios simultaneously
allows to eliminate |Vub/Vcb| from the analysis which removes a considerable uncertainty in the determination of the
UT, even if it is less important for |Vtd|. Indeed it is evident from (II.2) and (II.18) that, given Br(K+ → π+νν̄) and
Br(KL → π0νν̄), one can extract both Imλt and Reλt. One finds (Buchalla and Buras, 1994b; Buchalla et al., 1996a;
Buras, 1998)

Imλt = λ5

√
B2

X(xt)
, Reλt = −λ5

Reλc

λ Pc(X) +
√
B1 −B2

X(xt)
, (III.23)

where we have defined the “reduced” branching ratios

B1 =
Br(K+ → π+νν̄)

κ+
, B2 =

Br(KL → π0νν̄)

κL
. (III.24)

Using next the expressions for Imλt, Reλt and Reλc given in (II.28) and (II.29) one finds

¯̺ = 1 +
Pc(X)−

√

σ(B1 −B2)

A2X(xt)
, η̄ =

√
B2√

σA2X(xt)
(III.25)

with σ defined in (III.4). An exact treatment of the CKM matrix shows that the formulae (III.25), in particular the
one for η̄, are rather precise (Buchalla and Buras, 1994b).



18�
�(0;0) (1;0)

(�%; ��)
KL ! �o��� K+ ! �+���

FIG. 3 Unitarity triangle from K → πνν̄.

E. sin 2β from K → πνν̄

Using (III.25) one finds subsequently (Buchalla and Buras, 1994b)

sin 2β =
2rs

1 + r2s
, rs =

√
σ

√

σ(B1 −B2)− Pc(X)√
B2

= cotβ. (III.26)

Thus, within the approximation of (III.25), sin 2β is independent of Vcb (or A) and mt and as we will see in Section
IV these dependences are fully negligible.

It should be stressed that sin 2β determined this way depends only on two measurable branching ratios and on
the parameter Pc(X) which is completely calculable in perturbation theory as discussed in the previous section.
Consequently this determination is free from any hadronic uncertainties and its accuracy can be estimated with a
high degree of confidence. The calculation of NNLO QCD corrections to Pc(X) would certainly improve the accuracy
of the determination of sin 2β from the K → πνν̄ complex.

Alternatively, combining (III.1) and (III.15), one finds (Buras et al., 2004c)

sin 2βeff =
2r̄s

1 + r̄2s
, r̄s =

√
B1 −B2 − P̄c(X)√

B2

= cotβeff (III.27)

where βeff = β − βs. As βs = O(λ2), we have

cotβ = σ cotβeff +O(λ2) (III.28)

and consequently one can verify that (III.27), while being slightly more accurate, is numerically very close to (III.26).
This formula turns out to be more useful than (III.26) when SM extensions with new complex phases in X are
considered. We will return to it in Section VI.

Finally, as in the SM and more generally in all MFV models there are no phases beyond the CKM phase, the MFV
relation (I.1) should be satisfied. The confirmation of this relation would be a very important test for the MFV idea.
Indeed, in K → πνν̄ the phase β originates in the Z0 penguin diagram, whereas in the case of aψKS

in the B0
d − B̄0

d
box diagram. We will discuss the violation of this relation in particular new physics scenarios in Sections VI and VII.

F. The Angle γ from K → πνν̄

We have seen that a precise value of β can be obtained both from the CP asymmetry aψKS
and from the K → πνν̄

complex in a theoretically clean manner. The determination of the angle γ is much harder. As briefly discussed in
Section VIII and in great detail in (Ali, 2003; Buchalla, 2003; Fleischer, 2002, 2004; Hurth, 2003; Nir, 2001), there
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are several strategies for γ in B decays but only few of them can be considered as theoretically clean. They all are
experimentally very challenging and a determination of γ with a precision of better than ±5◦ from these strategies
alone will only be possible at LHCB and BTeV after a few years of running (Anikeev et al., 2001; Ball et al., 2000).

Here, we would like to point out that the K → πνν̄ decays offer a clean determination of γ that in accuracy can
compete with the strategies in B decays, provided the uncertainties present in |Vcb| and in the mt can be further
reduced and the two branching ratios measured with an accuracy of 5%.

The relevant formula, that has not been presented in the literature so far, can be directly obtained from (III.25).
It reads

cot γ =

√

σ

B2

(

A2X(xt)−
√

σ(B1 − B2) + Pc(X)
)

. (III.29)

We will investigate it numerically in Section IV.

G. A Second Route to UT from K → πνν̄

Instead of using the formulae for Imλt and Reλt in (III.23), it is instructive to construct the UT by using (III.27)
to find β and subsequently determine Rt from (III.1) with the result

Rt =

√

B1 − P̄ 2
c sin2 βeff − P̄c cosβeff

r̃A2X(xt)
. (III.30)

This (Rt, β) strategy by means of K → πνν̄ decays gives then (¯̺, η̄) as given in (II.30) and in particular

cot γ =
1−Rt cosβ

Rt sinβ
. (III.31)

IV. NUMERICAL ANALYSIS IN THE SM

A. Introducing Scenarios

In our numerical analysis we will consider various scenarios for the CKM elements and the values of the branching
ratios Br(K+ → π+νν̄) and Br(KL → π0νν̄) that should be measured in the future. In choosing the values of these
branching ratios we will be guided in this Section by their values predicted in the SM. We will consider then

• Scenario A for the present elements of the CKM matrix and future scenarios B and C with improved elements
of the CKM matrix and the improved value of Pc through the inclusion of NNLO QCD corrections that should
be available already this year (Buras et al., 2004b). They are summarized in table III. The accuracy on β in
table III corresponds to the error in sin 2β of ±0.025 and ±0.012 for scenarios B and C, respectively. It should
be achieved respectively at B factories, and LHCB (BTeV). As discussed recently (Boos et al., 2004), even at
this level of experimental precision, theoretical uncertainties in the determination of β through aψKS

can be
neglected. The accuracy on γ given in table III in scenarios B and C can presumably be achieved through the
clean tree diagrams strategies in B decays that will only become effective at LHC and BTeV. We will briefly
discuss them in Section VIII.

• Scenarios I and II for the measurements of Br(K+ → π+νν̄) and Br(KL → π0νν̄) that together with future
values of |Vcb|, mt and Pc should allow the determination of the UT, that is of the angles β and γ and of the
sides Rb and Rt, from K → πνν̄ alone. These scenarios are summarized in table IV. Scenario I corresponds to
the end of this decade, while Scenario II is more futuristic.

A comment on the values of B̂K and
√

B̂dFBd
in Scenario C in table III is in order. Keeping the present central

values of these two parameters but decreasing the errors results in a poor fit. The fit is considerably improved by
lowering the values of these two parameters. This shift is consistent with the exercise made in (Battaglia et al., 2003;

Stocchi, 2004) in which B̂K and
√

B̂dFBd
were considered separately as free parameters and their values have been

obtained from the UT fit, albeit with larger errors than assumed by us in Scenario C.
In the rest of the review we will frequently refer to tables III and IV indicating which observables listed there are

used at a given time in our numerical calculations.
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TABLE III Input for the determination of the branching ratios Br(K+ → π+νν̄) and Br(KL → π0νν̄) in three scenarios. The
corresponding (¯̺, η̄) are given too.

Scenario A Scenario B Scenario C

β (23.7 ± 2.1)· (23.5 ± 1.0)· (23.5 ± 0.5)◦

γ (63.0 ± 6.0)· (63.0 ± 5.0)· (63.0 ± 2.0)◦

|Vcb|/10
−3 41.5 ± 0.8 41.5 ± 0.6 41.5 ± 0.4

Rb 0.40 ± 0.06 0.40 ± 0.03 0.40 ± 0.01

mt[GeV] 168.1 ± 4.1 168 ± 3 168 ± 1

Pc(X) 0.39 ± 0.07 0.39 ± 0.03 0.39 ± 0.02

B̂K 0.86 ± 0.15 0.86 ± 0.08 0.75 ± 0.04
√

B̂dFBd
[MeV] 235+33

−41 235 ± 20 215 ± 10

ξ 1.24 ± 0.08 1.24 ± 0.04 1.24 ± 0.02

∆Ms[ps−1] ≥ 14.4 18.5 ± 1.0 18.5 ± 0.2

η̄ 0.354 ± 0.027 0.340 ± 0.009 0.358 ± 0.007

¯̺ 0.187 ± 0.059 0.209 ± 0.017 0.182 ± 0.011

TABLE IV Input for the determination of CKM parameters from K → πνν̄ in two scenarios.

Scenario I Scenario II

Br(K+ → π+νν̄)/10−11 8.0 ± 0.8 8.0 ± 0.4

Br(KL → π0νν̄)/10−11 3.0 ± 0.3 3.0 ± 0.15

mt[GeV] 168 ± 3 168 ± 1

Pc(X) 0.39 ± 0.03 0.39 ± 0.02

|Vcb|/10
−3 41.5 ± 0.6 41.5 ± 0.4

B. The UT Fit

In order to predict branching ratios in the SM and to investigate various strategies later on, it will be useful to
have at hand the results of a standard analysis of the UT that uses the available constraints from |Vub/Vcb|, |Vcb|, εK ,
∆Ms,d and (sin 2β)ψKS

. The relevant expressions and input parameters have been collected in Section II.E.3. The
latter ones are represented by the scenario A in table III.

The best fit values of ρ̄ and η̄ were obtained by minimizing the χ2 function:

χ2 = χ2
1 + χ2

2, (IV.1)

where

χ2
1 =

∑

i

(xtheoi − xexpi )2

σ2
i

(IV.2)

and

χ2
2 = 2 ·

[

Erfc−1

(

1

2
Erfc

(

1−A√
2σA

))]2

. (IV.3)

χ2
1 includes the constraints from sin 2β, ∆Md, εK and Rb. The σi in χ2

1 are the gaussian errors. The smallest value of

χ2 was found by also taking into account the flat errors of B̂K ,
√

B̂dFBd
and ξ, which were scanned in their ranges.

χ2
2 corresponds to ∆Md/∆Ms, which is implemented using the amplitude method (Moser and Roussarie, 1997), where

A is the amplitude that describes the bound on ∆Ms and σA is its uncertainty. For scenario A the minimal χ2 of our
fit was χ2

min = 0.427.
In the SM column of table V, we show the results for various quantities of interest that we obtained from the

present analysis. They are close to the ones found in (Buras et al., 2003c) and recently in (Stocchi, 2004), although
the errors found by us are slightly larger than in these two papers due to a more conservative error on Rb used here.
Similarly our central values for all observables are very close to the ones given in table 4 of (Ali, 2003).
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The 68% C.L. region for (¯̺, η̄), the area inside the ellipse, is also shown in the upper part of Fig. 5 to which we
will return later in this section. The UUT column will be discussed in the next section. The SM results in table V
follow from all constraints of Section II.E, including the direct measurement of sin 2β in (II.50). The resulting value
for sin 2β remains essentially unchanged from the direct measurement in (II.50) mainly because with a conservative
error on Rb in scenario A this constraint has essentially no impact on the final value of sin 2β.

Figure 5 demonstrates an excellent agreement between the direct measurement in (II.50) and the standard analysis
of the UT within the SM that uses the εK , Rb and ∆Md/∆Ms constraints, shown in the plot, and the ∆Md constraint
that we do not show to avoid too many lines. This gives a strong indication that the CKM matrix is very likely the
dominant source of CP violation in flavour violating decays but as we will see in Section VI, a significant impact on
the UT from new physics contributions is still possible. Certainly, the future measurements of various observables
will shed light on the dominance of the CKM scenario. We refer to (Ali, 2003; Buchalla, 2003; Buras, 2003a,b, 2004;
Fleischer, 2002, 2004; Hurth, 2003; Nir, 2001) for reviews of other methods relevant for the determination of the UT.
We will briefly review them in Section VIII.

TABLE V Values for different quantities from the UT fit. λt = V ∗
tsVtd.

Strategy SM UUT

η̄ 0.354 ± 0.027 0.360 ± 0.031

¯̺ 0.187 ± 0.059 0.174 ± 0.068

sin 2β 0.732 ±0.049 0.735 ±0.049

β (23.5 ± 2.1)◦ (23.7 ± 2.1)◦

γ (62.2 ± 8.2)◦ (64.2 ± 9.6)◦

Rb 0.400 ± 0.039 0.40 ± 0.044

Rt 0.887 ± 0.056 0.901 ± 0.064

|Vtd|/10
−3 8.24 ± 0.54 8.38 ± 0.62

Imλt /10−4 1.40 ± 0.12 1.43 ± 0.14

Reλt /10−4 −(3.06 ± 0.25) −(3.11 ± 0.28)

At this stage we would like to make only the following observations:

• The region ¯̺ < 0 is disfavoured by both the value of ∆Md and the lower bound on ∆Ms that through (II.44)
puts an upper bound on Rt. Clearly the measurement of ∆Ms giving Rt through (II.44) will have a large impact
on the results in table V provided the error in ξ can be reduced significantly.

• With Rmax
b = 0.46 from (II.48) we find, using (II.51)

β ≤ 27.4◦ (IV.4)

that should be compared with β = (23.7± 2.1)◦ following from the direct measurement of sin 2β. This means
that the direct measurement implies a value of β that is rather close to the upper bound (II.51) that follows
from the unitarity of the CKM matrix.

• This fact has the following implication: In extensions of the SM in which a new complex phase θd is present
in the B0

d − B̄0
d mixing and in which the CP asymmetry aψKS

measures β + θd and not β, the true value of β
is likely to be lower than its value in the SM with θd > 0 and not necessarily small. In this case the relation
(II.44) between Rt and ∆Md/∆Ms is likely to be simultaneously modified.

We will see in Section VI that these observations will have interesting consequences for K+ → π+νν̄ and KL → π0νν̄
within models containing new complex phases in the B0

d − B̄0
d mixing.

C. Branching Ratios in the SM

With the CKM parameters obtained from the UT fit we find using (II.2) and (II.18)

Br(K+ → π+νν̄)SM = (7.77± 0.82Pc
± 0.91) · 10−11 = (7.8± 1.2) · 10−11, (IV.5)

Br(KL → π0νν̄)SM = (3.0± 0.6) · 10−11. (IV.6)
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TABLE VI Values of Br(K+ → π+νν̄) and Br(KL → π0νν̄) in the SM in units of 10−11 obtained through various strategies
described in the text.

Strategy Br(K+ → π+νν̄) [10−11] Br(KL → π0νν̄) [10−11]

Scenario A 7.77 ± 1.23 3.05 ± 0.56

7.77 ± 0.82Pc
± 0.91

Scenario B 7.46 ± 0.55 2.82 ± 0.25

7.46 ± 0.35Pc
± 0.43

Scenario C 7.85 ± 0.35 3.12 ± 0.17

7.85 ± 0.23Pc
± 0.27

(Rb, γ) (B) 7.85 ± 0.69 3.10 ± 0.60

7.85 ± 0.35Pc
± 0.60

(Rb, γ) (C) 7.85 ± 0.38 3.10 ± 0.23

7.85 ± 0.23Pc
± 0.30

TABLE VII The anatomy of parametric uncertainties in Br(K+ → π+νν̄) and Br(KL → π0νν̄) corresponding to the results
of table VI.

Strategy σBr(K+ → π+νν̄) [10−11] σBr(KL → π0νν̄) [10−11]

Scenario A ±0.72 ¯̺ ± 0.11η̄ ± 0.44|Vcb | ± 0.31mt
±0.48η̄ ± 0.24|Vcb | ± 0.17mt

Scenario B ±0.20 ¯̺ ± 0.03η̄ ± 0.31|Vcb | ± 0.21mt
±0.15η̄ ± 0.17|Vcb | ± 0.11mt

Scenario C ±0.13 ¯̺ ± 0.03η̄ ± 0.22|Vcb | ± 0.08mt
±0.12η̄ ± 0.12|Vcb | ± 0.04mt

(Rb, γ) (B) ±0.06Rb
± 0.44γ ± 0.33|Vcb | ± 0.23mt

±0.48Rb
± 0.29γ ± 0.18|Vcb | ± 0.13mt

(Rb, γ) (C) ±0.02Rb
± 0.18γ ± 0.22|Vcb | ± 0.08mt

±0.16Rb
± 0.11γ ± 0.12|Vcb | ± 0.04mt

In (IV.5) we have separated the error due to Pc(X), given first, from the parametric error coming from the CKM
parameters and the value of mt. Adding these errors in quadrature we find the final result for Br(K+ → π+νν̄) in
the SM. In the case of Br(KL → π0νν̄) only parametric uncertainties matter. Our results are rather close to the ones
obtained in (Isidori, 2003; Kettell et al., 2002) although the central values of both branching ratios found by us here
and in (Buras et al., 2004c) are slightly larger than found in these papers.

The central value of Br(K+ → π+νν̄) in (IV.5) is below the central experimental value in (I.5), but within
theoretical, parametric and experimental uncertainties, the SM result is fully consistent with the data. We also
observe that the error in Pc(X) constitutes still a significant portion of the full error.

One of the main origins of the parametric uncertainties in both branching ratios is the value of |Vcb|. As pointed out
in (Kettell et al., 2002) with the help of εK the dependence on |Vcb| can be eliminated. Indeed, from the expression
for εK in (II.37) and the relation

Imλt
Reλt

= − tanβeff , βeff = β − βs, (IV.7)

that follows from (II.27), Imλt and Reλt can be determined subject mainly to the uncertainty in B̂K that should be
decreased through lattice simulations in the future. Note that β will soon be determined with high precision from
the aψKS

asymmetry. While we find this point interesting, the fact that the εK constraint has been already used in
the UT fit presented above, makes it clear that the idea of (Kettell et al., 2002) is automatically taken into account
in this fit.

We can next investigate what kind of predictions one will get in a few years when β and γ will be measured with
high precision through theoretically clean strategies at LHCB (Ball et al., 2000) and BTeV (Anikeev et al., 2001). As
pointed out in (Buras et al., 2003c), the use of β and γ is the most powerful strategy to get (¯̺, η̄). Performing then
the UT fit in scenarios B and C of table III with all constraints taken into account, we find

Imλt = (1.35± 0.05) · 10−4, Reλt = −(2.97± 0.11) · 10−4 (Scenario B) (IV.8)

Imλt = (1.42±±0.04) · 10−4, Reλt = −(3.08± 0.07) · 10−4 (Scenario C). (IV.9)
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The results for the branching ratios in these two scenarios are given in table VI, where we separated the error due to
Pc from the parametric uncertainties.

It is also instructive to use only the (Rb, γ) strategy to fix the CKM parameters as this construction of the UT
is unpolluted by new physics contributions. Working then with the values of |Vcb|, Rb and γ in scenarios B and C
we obtain the values for the branching ratios in the last two rows of table VI. We observe that this strategy has
significantly larger uncertainties than the full fit in Scenario B that is governed by the combination of β and γ. On
the other hand due to small errors assumed on Rb and γ in Scenario C, the (Rb, γ) strategy is competitive in this case
with the full fit. Still one should keep in mind that it will take some time before the errors on Rb and γ in Scenario
C can be a realized.

In table VII we present the anatomy of parametric uncertainties given in table VI. Adding these uncertainties in
quadrature gives the values in table VI. We observe that |Vcb| plays a prominent role in these uncertainties.
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FIG. 4 Br(K+ → π+νν̄) as a function of γ for different values of β and |Vcb|.

The improvement on the prediction for Br(K+ → π+νν̄) will certainly come from the measurement of ∆Ms that
hopefully will be available at the end of this year from Tevatron. To this end one can use in the case of K+ → π+νν̄,
the elegant formula (III.10) or just incorporate this new constraint through (II.44) in our numerical analysis that led
to (IV.5) and (IV.6). We find that, unless the error on ξ will be decreased and ∆Ms is measured with an accuracy
of better than 0.5/ps its influence will be insignificant. The impact of the measurement of ∆Ms on Br(KL → π0νν̄)
is generally much smaller than on Br(K+ → π+νν̄), as Br(KL → π0νν̄) is sensitive directly only to η̄ and only
indirectly to Rt.

Finally in Fig. 4 we show Br(K+ → π+νν̄) as a function of γ for different values of β and |Vcb|. To this end we have
used the formula (III.11) with mt = 168 GeV and Pc = 0.39. We observe that the dependence on β is rather weak,
while the dependence on γ is very strong. Also the dependence on |Vcb| is significant. This implies that a precise
measurement of γ one day will also have a large impact on the prediction for Br(K+ → π+νν̄).

D. Impact of Br(K+ → π+νν̄) on the UT

1. Preliminaries

Let us then reverse the analysis and investigate the impact of present and future measurements of Br(K+ → π+νν̄)
on |Vtd| and on the UT. To this end we take as additional inputs the present values of |Vcb| and β given in scenario
A in table III. We observe immediately that now a precise value of |Vcb| is required in order to obtain a satisfactory
result for (¯̺, η̄). Indeed K → πνν̄ decays are excellent means to determine Imλt and Reλt or equivalently the “sd”
unitarity triangle and in this respect have no competition from any B decay, but in order to construct the standard
“bd” triangle of Fig. 2 from these decays, |Vcb| is required. Here the CP-asymmetries in B decays measuring directly
angles of the UT are superior as the value of |Vcb| is not required. Consequently the precise value of |Vcb| is of utmost
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TABLE VIII The values for Rt and |Vtd|/10
−3 (in parentheses) from K+ → π+νν̄ for various cases considered in the text.

Scenario I Scenario II

Scenario B (β) 0.903 ± 0.078 (8.39 ± 0.69) 0.903 ± 0.041 (8.39 ± 0.36)

Scenario B (Rb) 0.905 ± 0.078 (8.41 ± 0.69) 0.905 ± 0.041 (8.41 ± 0.36)

importance if we want to make useful comparisons between various observables in K and B decays. On the other
hand, in some relations such as (I.1), the |Vcb| dependence is absent to an excellent accuracy.

2. |Vtd| from K+ → π+νν̄

Taking the present experimental value of Br(K+ → π+νν̄) in (I.5), we determine first the UT side Rt and next
the CKM element |Vtd|. As discussed in Sect 3.2.1, either β or Rb can provide the last necessary CKM input. Using
then the accurate expression for Br(K+ → π+νν̄) in (III.10) and the values of |Vcb| and β in the present scenario A
of table III, we find

Rt = 1.35± 0.64, |Vtd| = (12.5± 5.9) · 10−3 , (IV.10)

where the dominant error arises due to the error in the branching ratio. On the other hand, using Rb in Scenario A
instead of β gives:

Rt = 1.34+0.12
−0.63, |Vtd| = (12.5+1.1

−5.9) · 10−3. (IV.11)

The imposition of the Rb constraint eliminates the large values of Rt and |Vtd| and only values Br(K+ → π+νν̄) <
1.69 · 10−10 are allowed.

This significant difference in the impact of β and Rb on the determination of Rt and |Vtd| found here is mainly
due to the fact that a large portion of the range in (IV.10) is inconsistent with the value of Rb. Once the values of
Br(K+ → π+νν̄) are compatible with the measured value of Rb, as chosen in the scenarios of table IV, the impacts
of Rb and β on Rt and |Vtd| are very similar to each other.

We consider then scenarios I and II of table IV but do not take yet the values for Br(KL → π0νν̄) into account. As
an additional variable we take β or Rb in the scenario B of table III. In table VIII we give the values of Rt and |Vtd|
resulting from this exercise. Within the shown uncertainties the results obtained in scenario C of table III are the
same. The precise value of β or Rb does not matter much in the determination of Rt and |Vtd|, which is evident from
the inspection of the (¯̺, η̄) plot. This is also the reason why with the assumed errors on β and Rb the two exercises
in table VIII give essentially the same results.

More importantly, while the errors on Rt and |Vtd| in Scenario I are slightly larger than in the SM column of table V,
the corresponding errors in Scenario II are smaller. One should emphasize the clean character of this determination
and that Rt and |Vtd| have been basically found here only from β or Rb and Br(K+ → π+νν̄), whereas the results in
table V were obtained imposing several different constraints.

In order to judge the precision achievable in the future, it is instructive to show the separate contributions of the
uncertainties involved. In general, |Vtd| is subject to various uncertainties of which the dominant ones are given below

σ(|Vtd|)
|Vtd|

= ±0.39
σ(Pc)

Pc
± 0.70

σ(Br(K+))

Br(K+)
± σ(|Vcb|)
|Vcb|

. (IV.12)

We find then

σ(|Vtd|)
|Vtd|

= ±3.0%Pc
± 7.0%Br(K+) ± 1.4%|Vcb|, (Scenario I) (IV.13)

and

σ(|Vtd|)
|Vtd|

= ±2.0%Pc
± 3.5%Br(K+) ± 1.0%|Vcb|. (Scenario II) (IV.14)
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Adding the errors in quadrature, we find that |Vtd| can be determined with an accuracy of ±7.7% and ±4.1%,
respectively. These numbers are increased to ±8.2% and ±4.2% once the uncertainties due to mt, αs and β (or
|Vub/Vcb|) are taken into account. As a measurement of Br(K+ → π+νν̄) with a precision of 5% is very challenging,
the determination of |Vtd| with an accuracy better than ±5% from Br(K+ → π+νν̄) seems very difficult from the
present perspective.

We note also that present uncertainty in the determination of |Vtd| due to Pc amounts to ±7%, making an NNLO
calculation of Pc very desirable.

It is of interest to compare the precision on |Vtd| from K+ → π+νν̄ just discussed with the one that will be obtained
one day directly from the ratio ∆Md/∆Ms. First Rt can be directly obtained by means of (II.44). As ∆Ms should
be measured very precisely already in the Run II at Tevatron, the experimental error in (II.44) will be certainly
negligible one day, in particular once data from LHC will be available. The fate of the error on Rt will then be solely
dependent on the accuracy with which ξ can be calculated. The present uncertainty in ξ is ±6.5%. In obtaining |Vtd|
an additional error comes from |Vcb|. It is roughly ±2% at present and should be decreased in the future. Thus, in
the long run, the precision with which |Vtd| can be determined from ∆Md/∆Ms will be in the hands of lattice gauge
theorists. We expect that a direct measurement of |Vtd| in this manner, with an accuracy at the level of 4 − 5%,
should be possible in the second half of this decade.

In the case of K+ → π+νν̄ the future of the accuracy on |Vtd| will on the other hand be dominated by experimental
accuracy on Br(K+ → π+νν̄) as, after the NNLO calculation in (Buras et al., 2004b) has been completed, the error
on |Vtd| coming from Pc should be decreased below ±3%, as seen in (IV.13) and (IV.14).

3. Impact on UT

The impact of K+ → π+νν̄ on the UT is illustrated in Fig. 5, where in the upper part we show the band
corresponding to the present central experimental value of Br(K+ → π+νν̄) in (I.5) and the present uncertainty
due to Pc(X). As expected from the previous discussion, the central value is far from the standard UT fit. In the
lower part of Fig. 5 we show the lines corresponding to several selected values of Br(K+ → π+νν̄). The construction
of the UT from both decays shown there is described below.

E. Impact of Br(KL → π0νν̄) on the UT

1. η̄ and Imλt

We consider next the impact of a future measurement of Br(KL → π0νν̄) on the UT. As already discussed in the
previous section, this measurement will offer a theoretically clean determinations of η̄ and in particular of Imλt. The
relevant formulae are given in (III.17) and (III.18), respectively. Using scenarios I and II of table IV we find

η̄ = 0.351± 0.022, Imλt = (1.39± 0.08) · 10−4 (Scenario I). (IV.15)

η̄ = 0.351± 0.011, Imλt = (1.39± 0.04) · 10−4. (Scenario II) (IV.16)

The obtained precision in the case of Scenario II is truely impressive. We stress the very clean character of these
determinations.

2. Completing the Determination of the UT

In order to construct the UT we need still another input. It could be β, γ, Rb or Rt. It turns out that the most
effective in this determination is γ, as in the classification of (Buras et al., 2003c) the (η̄, γ) strategy belongs to the
top class together with the (β, γ) pair. The angle γ should be known with high precision in five years. Still it is of
interest to see what one finds when β instead of γ is used. Rb is not useful here as it generally gives two solutions for
the UT.

In analogy to table VIII we show in table IX the values of ¯̺ and |Vtd| resulting from scenarios I and II without using
Br(K+ → π+νν̄). As an additional variable we use β or γ. We observe that, with the assumed errors on β and γ, the
use of γ is more effective than the use of β. Moreover, while going from scenario I to scenario II for Br(KL → π0νν̄)
has a significant impact when β is used, the impact is rather small when γ is used instead. Both features are consistent
with the observations made in (Buras et al., 2003c) in the context of (β, η̄) and (γ, η̄) strategies. In particular, the
last feature is directly related to the fact that γ is by more than a factor of two larger than β.
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FIG. 5 Upper plot: the result of the standard UT fit as discussed in the text compared to the band resulting from the central
experimental value of Br(K+ → π+νν̄) including the present uncertainty due to Pc(X). Lower plot: the UT from K → πνν̄ in
Scenario I of table IV. Also lines corresponding to several values of Br(K+ → π+νν̄) and Br(KL → π0νν̄) (in units of 10−11)
are shown.

The main message from table IX is that, using a rather precise value of γ, a very precise determination of |Vtd|
becomes possible, where the branching fraction of KL → π0νν̄ needs to be known only to about 10% accuracy.

3. A Clean and Accurate Determination of |Vcb| and |Vtd|

Next, combining β and γ with the values of Br(KL → π0νν̄) and mt, a clean determination of |Vcb| by means of
(III.22) is possible. In turn also |Vtd| can be determined. In table X we show the values of |Vcb| and |Vtd| obtained
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TABLE IX The values for ¯̺ and |Vtd|/10
−3 (in parentheses) from KL → π0νν̄ for various cases considered in the text.

Scenario I Scenario II

Scenario B (β) 0.193 ± 0.063 (8.18 ± 0.57) 0.193 ± 0.048 (8.18 ± 0.41)

Scenario C (β) 0.193 ± 0.053 (8.18 ± 0.49) 0.193 ± 0.033 (8.18 ± 0.28)

Scenario B (γ) 0.179 ± 0.042 (8.30 ± 0.37) 0.179 ± 0.041 (8.30 ± 0.41)

Scenario C (γ) 0.179 ± 0.019 (8.30 ± 0.18) 0.179 ± 0.017 (8.30 ± 0.16)

using scenarios I and II for Br(KL → π0νν̄) in table IV with β and γ in scenarios B and C of table III.
We observe that the errors on |Vcb|, except for the pair (C,II), are larger than presently obtained from semi-leptonic

B decays. But one should emphasize that this determination is essentially without any theoretical uncertainties.
The high precision on |Vtd| is a result of a very precise measurement of Rt by means of the (β, γ) strategy and a
rather accurate value of |Vcb| obtained with the help of Br(KL → π0νν̄). Again also in this case the determination is
theoretically very clean.

TABLE X The values for |Vcb| and |Vtd| (in parentheses) in units of 10−3 from KL → π0νν̄, β and γ for various cases considered
in the text.

Scenario I Scenario II

Scenario B 41.2 ± 1.6 (8.24 ± 0.32) 41.2 ± 1.3 (8.24 ± 0.26)

Scenario C 41.2 ± 1.2 (8.24 ± 0.25) 41.2 ± 0.7 (8.24 ± 0.15)

F. Impact of Br(K+ → π+νν̄) and Br(KL → π0νν̄) on UT

Let us next update the analysis of (Buchalla and Buras, 1996), where the determination of the UT from both decays
has been discussed in explicit terms. The relevant formulae have been given in Section III. We consider again two
scenarios for which the input parameters are collected in table IV. This time no other parameters beside those given
in this table are required for the construction of the UT. The results for the CKM parameters in these two scenarios
are given in table XI.

We observe that respectable determinations of all considered quantities except for ¯̺, γ and Reλt in Scenario I can
be obtained. Of particular interest are the accurate determinations of sin 2β and of Imλt. In the lower part of Fig. 5
we show the resulting UT in the scenario I in question and compare it with its present determination, shown in the
upper part of this figure, as discussed at the beginning of this section. Due to the absence of the uncertainty in
Pc the measurement of Br(KL → π0νν̄) with the accuracy of 10% gives a much better determination of η̄ than the
corresponding determination of ¯̺ from Br(K+ → π+νν̄), where Pc matters.

The parameters in the scenario I have been chosen in such a manner that the UT obtained from K → πνν̄ shown
in the lower part of Fig. 5 agrees perfectly with the UT determined from the standard analysis of the UT shown in
the upper part of this figure. However, as discussed in Section VI.B, this certainly does not have to be the case and
each crossing points of various lines coming from K+ → π+νν̄ and KL → π0νν̄ indicates the position of the apex of
a “fake” unitarity triangle in the case of the departures from the SM expectations. We will return to this topic in
Section VI.E.

G. The Angle β from K → πνν̄

Let us next investigate the separate uncertainties in the determination of sin 2β coming from Pc, Br(K
+ → π+νν̄) ≡

Br(K+) and Br(KL → π0νν̄) ≡ Br(KL). We find first

σ(sin 2β)

sin 2β
= ±0.31

σ(Pc)

Pc
± 0.55

σ(Br(K+))

Br(K+)
± 0.39

σ(Br(KL))

Br(KL)
. (IV.17)

This leads to

σ(sin 2β) = 0.017Pc
+ 0.039Br(K+) + 0.028Br(KL) = 0.050 (Scenario I) (IV.18)
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and

σ(sin 2β) = 0.011Pc
+ 0.020Br(K+) + 0.014Br(KL) = 0.027, (Scenario II) (IV.19)

where the errors have been added in quadrature. The uncertainties due to |Vcb| and mt are fully negligible.
We observe that

• The present uncertainty in sin 2β due to Pc alone amounts to 0.04, implying that a NNLO calculation of Pc is
very desirable.

• The accuracy of the determination of sin 2β, after the NNLO result will be available, will depend dominantly
on the accuracy with which both branching ratios will be measured. In order to decrease σ(sin 2β) down to 0.02
they have to be measured with an accuracy better than 5%.

TABLE XI The determination of CKM parameters from K → πνν̄ for two scenarios of table IV.

Scenario I Scenario II

η̄ 0.351 ± 0.022 0.351 ± 0.011

¯̺ 0.167 ± 0.079 0.167 ± 0.042

sin 2β 0.716 ± 0.050 0.716 ± 0.027

β (22.8 ± 2.2)◦ (22.8 ± 1.1)◦

γ (64.2 ± 10.9)◦ (64.2 ± 5.9)◦

Rb 0.389 ± 0.040 0.389 ± 0.020

Rt 0.902 ± 0.072 0.902 ± 0.039

|Vtd|/10
−3 8.38 ± 0.65 8.38 ± 0.34

Imλt/10
−4 1.39 ± 0.08 1.39 ± 0.04

Reλt/10
−4 −3.13 ± 0.29 −3.13 ± 0.15

H. The Angle γ from K → πνν̄

Let us next investigate, in analogy to (IV.17), the separate uncertainties in the determination of γ coming from Pc,
Br(K+ → π+νν̄), Br(KL → π0νν̄) and |Vcb|. The relevant expression for γ in terms of these quantities is given in
(III.29). We find then

σ(γ)

γ
= ±0.75

σ(Pc)

Pc
± 1.32

σ(Br(K+))

Br(K+)
± 0.07

σ(Br(KL))

Br(KL)
± 4.11

σ(|Vcb|)
|Vcb|

± 2.34
σ(mt)

mt
. (IV.20)

This gives

σ(γ) = 3.7◦Pc
+ 8.5◦Br(K+) + 0.4◦Br(KL) + 3.8◦|Vcb|

+ 2.6◦mt
= 10.4◦ (IV.21)

and

σ(γ) = 2.5◦Pc
+ 4.2◦Br(K+) + 0.2◦Br(KL) + 2.5◦|Vcb|

+ 0.9◦mt
= 5.7◦ (IV.22)

for Scenario I and II, respectively, where the errors have been added in quadrature.
We observe that

• The present uncertainty in γ due to Pc alone amounts to 8.6◦, implying that a NNLO calculation of Pc is very
desirable.

• The dominant uncertainty in the determination of γ in Scenarios I and II resides in Br(K+ → π+νν̄). In order
to lower σ(γ) below 5◦, a measurement of this branching ratio with an accuracy of better than 5% is required.
The measurement of Br(KL → π0νν̄) has only a small impact on this determination.
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TABLE XII The uncertainties in various quantities due to the error in Pc.

σ(Pc) ±0.07 ±0.03 ±0.02

Br(K+ → π+νν̄)/10−11 ±0.82 ±0.34 ±0.23

η̄ − − −

¯̺ ±0.067 ±0.029 ±0.019

sin 2β ±0.042 ±0.018 ±0.012

β ±1.8◦ ±0.8◦ ±0.5◦

γ ±9.4◦ ±3.8◦ ±2.5◦

Rb ±0.033 ±0.019 ±0.009

Rt ±0.061 ±0.026 ±0.017

|Vtd|/10
−3 ±0.57 ±0.24 ±0.16

Imλt/10
−4 − − −

Reλt/10
−4 ±0.25 ±0.11 ±0.07

I. Summary

In this section we have presented a very detailed numerical analysis of the formulae of Section III. First working in
three scenarios, A, B and C, for the input parameters that should be measured precisely through B physics observables
in this decade, we have shown how the accuracy on the predictions of the branching ratios will improve with time.

In the case of Br(KL → π0νν̄) there are essentially no theoretical uncertainties and the future of the accuracy of
the prediction on this branching ratio within the SM depends fully on the accuracy with which Imλt and mt can be
determined from other processes. We learn from table VI that the present error of roughly 20% will be decreased to
9% and 5% when the scenarios B and C will be realized, respectively. As seen in table VII, the progress on the error
on Br(KL → π0νν̄) will depend importantly on the progress on |Vcb|.

The case of K+ → π+νν̄ is a bit different as now also the uncertainty in Pc enters. As discussed in Section II, this
uncertainty comes on the one hand from the scale uncertainty that can be reduced through a NNLO calculation and
on the other hand from the error in mc. The scale uncertainty dominates at present but after a NNLO result will
be available, we expect the error on mc to be mainly responsible for the error in Pc. Formula (II.17) quantifies this
explicitely. The anatomy of parametric uncertainties in Br(K+ → π+νν̄) is presented in table VII. As in the case of
Br(KL → π0νν̄) also here the reduction of the error in |Vcb| will be important.

As seen in table VI the present error in Br(K+ → π+νν̄) due to Pc amounts roughly to ±10% an is almost as
large as the parametric uncertainty from the CKM elements and mt. It is also clearly seen in this table that in order
to benefit from the improved values of the CKM parameters and of mt, also the uncertainty in Pc has to be reduced
through a NNLO calculation and the improvement of mc. It appears to us that the present error of 10% due to Pc
could be decreased to 4.5% and even 3% one day with the present total error of 15% reduced to 7% and even 4.5%,
respectively.

In the main part of this section we have investigated the impact of the future measurements of Br(K+ → π+νν̄)
and Br(KL → π0νν̄) on the determination of the CKM matrix. This analysis was culminated in the table XI but a
useful anatomy of various contributions can also be found in the remaining tables of this section and various formulae.
These results are self-explanatory and demonstrate very clearly that the K → πνν̄ decays offer powerful means in the
determination of the UT and of the CKM matrix.

Clearly, the future determination of various observables by means of K → πνν̄ will crucially depend on the accuracy
with which Br(K+ → π+νν̄) and Br(KL → π0νν̄) can be measured. Our discussion shows that it is certainly desirable
to measure both branching ratios with an accuracy of at least 5%.

On the other hand the uncertainties due to Pc, |Vcb| and to a lesser extent mt are also important ingredients of
these investigations. In tables XII and XIII we summarize the uncertainties in various quantities of interest due to
errors in Pc and |Vcb|, respectively.



30

TABLE XIII The uncertainties in various quantities due to the error in |Vcb|.

σ(|Vcb|)/10
−3 ±0.8 ±0.6 ±0.4

Br(K+ → π+νν̄)/10−11 ±0.44 ±0.31 ±0.22

η̄ ±0.013 ±0.010 ±0.007

¯̺ ±0.033 ±0.025 ±0.016

sin 2β − − −

β − − −

γ ±5.3◦ ±3.9◦ ±2.6◦

Rb ±0.003 ±0.002 ±0.001

Rt ±0.036 ±0.027 ±0.018

|Vtd|/10
−3 ±0.17 ±0.12 ±0.08

Imλt/10
−4 − − −

Reλt/10
−4 − − −

V. K → πνν̄ AND MFV

A. Preliminaries

A general discussion of the decays K+ → π+νν̄ and KL → π0νν̄ in the framework of minimal flavour violation has
been presented in (Buras and Fleischer, 2001). Earlier papers in specific MFV scenarios like two Higgs doublet can be
found in (Belanger et al., 1992; Cho, 1998), where additional references are given. Basically, all formulae of Section
II and III remain valid except that

• the functions X(xt) and S0(xt) are replaced by the real valued master functions (Buras, 2003a,b, 2004) X(v)
and S(v) with v denoting collectively the parameters of a given MFV model,

• if the function X(v) is allowed to take also negative values, the following replacements should effectively be
made in all formulae of Sections II and III (Buras and Fleischer, 2001)

X → |X |, Pc(X)→ sgn(X)Pc(X), (V.1)

• if the function S(v) is also allowed to take negative values, sgn(S(v)) enters some of the expressions given above.
We refer to (Buras and Fleischer, 2001) for details.

Here we will assume S(v) > 0, as in the SM, because as found in (Buras and Fleischer, 2001; D’Ambrosio et al., 2002)
the negative values of S(v) are disfavoured although not yet fully excluded. On the other hand, we will allow for
negative values of the function X(v). The values of S(v) can be calculated in any MFV model. On the other hand
S(v) can be constrained from the usual UT fit with the result (Buras et al., 2003c)

1.3 ≤ S(v) ≤ 3.8 (95% probability region), (V.2)

to be compared with S(v) = 2.42± 0.09 in the SM.
Concerning the UT in the MFV models, we recall that a universal unitarity triangle (UUT) can be be constructed

by using only quantities that do not depend on particular parameters of a given MFV model (Buras et al., 2001b).
Using then |Vcb|, |Vub/Vcb|, (II.50) for sin 2β and the lower bound on ∆Ms together with (II.44) we find the apex
of the UUT described by the values of (¯̺, η̄) in the column UUT in table V. The results for various quantities of
interest related to this UUT are collected also there. A similar analysis has been performed in (Buras et al., 2003c;
D’Ambrosio et al., 2002).

It should be stressed that any MFV model that is inconsistent with the values given in the UUT column in table V
is ruled out. We observe that there is little room for MFV models that in their predictions for UT differ significantly
from the SM. It is also clear that, to distinguish the SM from the MFV models on the basis of the analysis of the UT
presented above, will require considerable reduction of theoretical uncertainties.
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TABLE XIV Values of Br(KL → π0νν̄) in the MFV models in units of 10−11 for specific values of aψKS
and Br(K+ → π+νν̄)

and sgn(X) = +1 (−1). We set Pc(X) = 0.39.

Br(K+ → π+νν̄) [10−11] aψKS
= 0.69 aψKS

= 0.74 aψKS
= 0.79

5.0 1.4 (5.9) 1.6 (6.9) 2.0 (8.0)

10.0 3.7 (10.1) 4.4 (11.9) 5.3 (13.8)

15.0 6.3 (14.1) 7.5 (16.6) 8.9 (19.4)

20.0 9.0 (18.0) 10.7 (21.2) 12.6 (24.8)

25.0 11.7 (21.9) 13.9 (25.7) 16.5 (30.1)

38.0 19.1 (31.6) 22.7 (37.2) 26.9 (43.6)
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FIG. 6 Br(K+ → π+νν̄) as a function of Br(KL → π0νν̄) for several values of aψKS
in the case of sgn(X) = ±1.

B. K+ → π+νν̄ versus KL → π0νν̄

An important consequence of (III.26) and (I.1) is the following MFV relation (Buras and Fleischer, 2001)

B1 = B2 +

[

cotβ
√
B2 + sgn(X)

√
σPc(X)

σ

]2

, (V.3)

that, for a given sin 2β extracted from aψKS
and Br(K+ → π+νν̄), allows to predict Br(KL → π0νν̄). We observe

that in the full class of MFV models, independent of any new parameters present in these models, only two values for
Br(KL → π0νν̄), corresponding to two signs of X , are possible. Consequently, measuring Br(KL → π0νν̄) will either
select one of these two possible values or rule out all MFV models.

In (Buras and Fleischer, 2001) a detailed numerical analysis of the relation (V.3) has been presented. In view of
the improved data on sin 2β and Br(K+ → π+νν̄) we update and extend this analysis. In table XIV, we show values
of Br(KL → π0νν̄) in the MFV models for several values of aψKS

and Br(K+ → π+νν̄) consistent with the present
data and the two signs of X .

A more detailed presentation is given in Fig. 6, where we show Br(K+ → π+νν̄) as a function of Br(KL → π0νν̄)
for several values of aψKS

and two signs of X . These plots are universal for all MFV models. As emphasized in
(Buras and Fleischer, 2001), the measurements of Br(KL → π0νν̄), Br(K+ → π+νν̄) and aψKS

will easily allow the
distinction between the two signs of X . This is clearly seen in table XIV and Fig. 6. The reduction of the uncertainty
due to Pc(X), that is non-negligible, would help in this distinction. In particular, while for X > 0, Br(K+ → π+νν̄)
is always larger than Br(KL → π0νν̄), this is not always the case for X < 0, where the destructive interference
between the top and charm contributions to K+ → π+νν̄ can suppress its branching ratio below Br(KL → π0νν̄).
We will return to this issue in Section VI in the context of scenarios with new complex phases.
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We also observe, as in (Buras and Fleischer, 2001), that the upper bound on Br(KL → π0νν̄) following from the
data on Br(K+ → π+νν̄) and sin 2β ≤ 0.785 is substantially stronger than the model independent bound following
from isospin symmetry (Grossman and Nir, 1997)

Br(KL → π0νν̄) < 4.4 ·Br(K+ → π+νν̄). (V.4)

With the data in (I.5), that imply

Br(K+ → π+νν̄) < 3.8 · 10−10 (90% C.L.), (V.5)

one finds from (V.4)

Br(KL → π0νν̄) < 1.7 · 10−9 (90% C.L.), (V.6)

that is still two orders of magnitude lower than the upper bound from the KTeV experiment at Fermilab (Alavi-Harati
et al., 2000b), yielding Br(KL → π0νν̄) < 5.9 · 10−7.

On the other hand, taking the experimental bound Br(K+ → π+νν̄) in (I.5) and aψKS
≤ 0.785, we find from (V.3)

Br(KL → π0νν̄)MFV ≤
{

2.7 · 10−10 sgn(X) = +1

4.4 · 10−10 sgn(X) = −1.
(V.7)

While the E391a experiment at KEK could give in principle results slightly below the absolute bound in (V.6), it
will have certainly hard time to reach the MFV bound in (V.7). Therefore, the observation of any events by this
experiment will likely signal effects of new flavour violating interactions.

As aψKS
in MFV models determines the true value of β and the true value of γ can be determined in tree level

strategies in B decays one day, the true value of η̄ can also be determined in a clean manner. Consequently, using
(III.21) offers probably the cleanest measurement of |X | in the field of weak decays. We will return to this issue in
Section VI where this statement can be generalized to most extensions of the SM.

VI. SCENARIOS WITH NEW COMPLEX PHASES IN ENHANCED Z0-PENGUINS AND B0
d − B̄0

d MIXING

A. Preliminaries

In this section we will consider three simple scenarios beyond the framework of MFV, in which X becomes a complex
quantity as given in (I.7), and the universal box function S(v) entering εK and ∆Md,s not only becomes complex but
generally becomes non-universal with

SK(v) = |SK(v)|ei2θK , Sd(v) = |Sd(v)|ei2θd , Ss(v) = |Ss(v)|ei2θs , (VI.1)

for K0 − K̄0, B0
d − B̄0

d and B0
s − B̄0

s mixing, respectively. If these three functions are different from each other, some
universal properties found in the SM and MFV models, that have been recently reviewed in (Buras, 2003a,b, 2004),
are lost. In addition, the mixing induced CP asymmetries in B decays do not measure the angles of the UT but only
sums of these angles and of θi.

In order to simplify the presentation we will assume that Ss = S0(xt) as in the SM but we will take Sd(v) to be
complex with Sd(v) 6= S0(xt). This will allow to change the relation between Rt and ∆Md/∆Ms in (II.44). We will
leave open whether SK(v) receives new physics contributions.

The scenario in which new physics enters dominantly through enhanced Z0 penguins involving a new CP-violating
weak phase was first considered in (Buras et al., 2000, 1998; Buras and Silvestrini, 1999; Colangelo and Isidori, 1998)
in the context of rare K decays and the ratio ε′/ε measuring direct CP violation in the neutral kaon system, and was
generalized to rare B decays in (Atwood and Hiller, 2003; Buchalla et al., 2001). Recently this particular extension
of the SM has been revived in (Buras et al., 2004c,d), where it has been pointed out that the anomalous behaviour in
B → πK decays observed by CLEO, BABAR and Belle (Aubert et al., 2002b, 2003b, 2004b; Bornheim et al., 2003;
Chao et al., 2004) could be due to the presence of enhanced Z0 penguins carrying a large new CP-violating phase
around −90◦.

The possibility of important electroweak penguin contributions behind the anomalous behaviour of the B → πK
data has been pointed out already in (Buras and Fleischer, 2000), but only recently has this behaviour been indepen-
dently observed by the three collaborations in question. Recent discussions related to electroweak penguins can be
also found in (Beneke and Neubert, 2003; Yoshikawa, 2003). Other conjectures in connection with these data can be
found in (Chiang et al., 2004; Gronau and Rosner, 2003a,b).
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The implications of the large CP-violating phase in electroweak penguins for rare K and B decays and B → Xsl
+l−

have been analyzed in detail in (Buras et al., 2004c,d) and subsequently the analyses of B → Xsl
+l− andKL → π0l+l−

have been extended in (Rai Choudhury et al., 2004) and (Isidori et al., 2004), respectively. It turns out that in this
scenario several predictions differ significantly from the SM expectations with most spectacular effects found precisely
in the K → πνν̄ system. These effects should easily be identified once the data improve.

On the other hand the scenarios with complex phases in B0
d− B̄0

d mixing have been considered in many papers with
the subset of references given in (Bergmann and Perez, 2000, 2001; Bertolini et al., 1987; D’Ambrosio and Isidori,
2002; Laplace, 2002; Laplace et al., 2002; Nir and Silverman, 1990a,b). Most recently this scenario has been discussed
in (Fleischer et al., 2003).

In what follows, we will first briefly review the results for K+ → π+νν̄ and KL → π0νν̄ obtained in (Buras et al.,
2004c,d), that were motivated by the B → πK data. Subsequently, we will discuss the implications of this scenario
for the K → πνν̄ complex independently of the B → πK system.

Next we will consider scenarios with new physics present only in B0
d − B̄0

d mixing and the function X as in the
SM. Here the impact on Br(K+ → π+νν̄) and Br(KL → π0νν̄) comes only through modified values of the CKM
parameters but, as we will see below, this impact is rather interesting.

Finally we will consider a hybrid scenario with new physics entering both K → πνν̄ decays and B0
d − B̄0

d mixing.
In this discussion the (Rb, γ) strategy for the determination of the UT will play a very important role.

B. A Large New CP-Violating Phase θX

In this scenario the function X becomes a complex quantity (Buras et al., 1998), as given in (I.7), with θX being a
new complex phase that originates primarily from new physics contributions to the Z0 penguin diagrams. An explicit
realization of such extension of the SM will be discussed in Section VII. In what follows it will be useful to define the
following combination of weak phases,

βX ≡ β − βs − θX , (VI.2)

that generalizes βeff to the scenario considered.
Imposing the upper bound on the size of Z0 penguins from the BaBar and Belle data on B → Xsµ

+µ− (Aubert
et al., 2003a; Kaneko et al., 2003), and taking into account the data on B → ππ and B → πK decays, one finds
(Buras et al., 2004c,d)

|X | = 2.17± 0.12, θX = −(86± 12)◦, βX = (111± 12)◦, (VI.3)

to be compared with |X | = 1.53± 0.04 and βeff = (24.5± 2.0)◦ in the SM. While |X | is only enhanced by a factor of
1.5, the presence of the large new CP violating phase has spectacular implications on the pattern of K → πνν̄ decays.
Clearly, in view of significant experimental uncertainties in B → ππ, B → πK and B → Xsµ

+µ−, that led to (VI.3),
it is difficult to attach any high confidence level to these results but it is legitimate and certainly interesting to take
them seriously and to analyze them.

Following (Buras et al., 2004c), the branching ratios for K+ → π+νν̄ and KL → π0νν̄ are now given as follows:

Br(K+ → π+νν̄) = κ+

[

r̃2A4R2
t |X |2 + 2r̃P̄c(X)A2Rt|X | cosβX + P̄c(X)2

]

(VI.4)

Br(KL → π0νν̄) = κLr̃
2A4R2

t |X |2 sin2 βX , (VI.5)

with κ+ given in (II.3), κL given in (II.19), P̄c(X) defined in (III.2), βX in (VI.2) and r̃ in (II.26).
Once Br(K+ → π+νν̄) and Br(KL → π0νν̄) have been measured, the parameters |X | and βX can be determined,

subject to ambiguities that can be resolved by considering other processes, such as the non-leptonic B decays and
the rare decays discussed in (Buras et al., 2004c). Combining (VI.4) and (VI.5), the generalization of (III.27) to the
scenario considered can be found (Buras et al., 2004c, 1998)

sin 2βX =
2r̄s

1 + r̄2s
, r̄s =

ε1
√
B1 −B2 − P̄c(X)

ε2
√
B2

= cotβX , (VI.6)

where εi = ±1. Moreover,

|X | = ε2
√
B2

r̃A2Rt sinβX
, ε2 sinβX > 0. (VI.7)
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The “reduced” branching ratios Bi are given in (III.24).
These formulae are valid for arbitrary βX 6= 0◦. For θX = 0◦ and ε1 = ε2 = 1, one obtains from (III.27) the SM

result in (III.27). In the scenario considered here, we have 99◦ ≤ βX ≤ 125◦ and, consequently, ε1 = −1 and ε2 = 1.
Other ranges of βX will be considered below.

As in this scenario it is assumed that there are no significant contributions to B0
s,d−B̄0

s,d mixings and εK , in particular
no complex phases, the determination of the CKM parameters through the standard analysis of the unitarity triangle
proceeds as in the SM with the input parameters given in Section II.E. Consequently, β and βs are already known
from the usual analysis of the UT and the measurement of r̄s in K → πνν̄ decays will provide a theoretically clean
determination of θX and βX . Similarly, a clean determination of |X |, with Rt determined in table V, is possible by
means of (VI.7), so that using formulae of (Buras et al., 2003b, 2004c) the electroweak parameters (q, φ) in B → πK
decays will be determined. Assuming that the measurements of Br(K+ → π+νν̄) and Br(KL → π0νν̄) with 5− 10%
accuracy will be performed one day, the decays in question will most probably provide the cleanest measurements of
(q, φ).

Using the results in (VI.3) and the parameters in (II.4) and (II.47)–(II.49), one finds (Buras et al., 2004c)

Br(K+ → π+νν̄) = (7.5± 2.1) · 10−11, Br(KL → π0νν̄) = (3.1± 1.0) · 10−10. (VI.8)

This should be compared with the SM predictions given in (IV.5) and (IV.6).
We observe that, in spite of the enhanced value of |X |, Br(K+ → π+νν̄) does not significantly differ from the SM

estimate because the enhancement of the first term in (VI.4) is to a large extent compensated by the suppression of
the second term (cosβX ≪ cos(β − βs)) and its reversed sign. Consequently, Br(K+ → π+νν̄) is here very strongly
dominated by the “top” contribution given by the function X and charm-top interference is either small or even
destructive.

On the other hand, we observe a spectacular enhancement of Br(KL → π0νν̄) by one order of magnitude. Conse-
quently, while Br(KL → π0νν̄) ≈ (1/3)Br(K+ → π+νν̄) in the SM, it is substantially larger than Br(K+ → π+νν̄) in
this scenario. The huge enhancement of Br(KL → π0νν̄) seen here is mainly due to the large weak phase βX ≈ 111◦,
as

Br(KL → π0νν̄)

Br(KL → π0νν̄)SM
=

∣

∣

∣

∣

X

XSM

∣

∣

∣

∣

2 [
sinβX

sin(β − βs)

]2

(VI.9)

and to a lesser extent due to the enhanced value of |X |.
Inspecting (VI.4) and (VI.5), one observes (Buras et al., 2004c) that the very strong dominance of the “top”

contribution in these expressions implies a simple approximate expression:

Br(KL → π0νν̄)

Br(K+ → π+νν̄)
≈ 4.4× (sinβX)2 ≈ 4.2± 0.2. (VI.10)

We note that Br(KL → π0νν̄) is then rather close to its model-independent upper bound (Grossman and Nir, 1997)
given in (V.4). It is evident from (VI.6) that this bound is reached when the reduced branching ratios B1 and B2 in
(III.24) are equal to each other.

A spectacular implication of these findings is a strong violation of the MFV relation (Buchalla and Buras, 1994b)
in (I.1). Indeed, one finds (Buras et al., 2004c,d)

(sin 2β)πνν̄ = sin 2βX = −(0.69+0.23
−0.41), (VI.11)

in striking disagreement with (sin 2β)ψKS
= 0.736± 0.049.

In Fig. 7, we show – in the spirit of the plots in Fig. 6 – Br(K+ → π+νν̄) as a function of Br(KL → π0νν̄) for
fixed values of βX that has been presented in (Buras et al., 2004c). As this plot is independent of |X |, it offers a direct
measurement of the phase βX . The first line on the left represents the MFV models with βX = βeff = β− βs, already
discussed in Section V, whereas the first line on the right corresponds to the model-independent Grossman–Nir bound
(Grossman and Nir, 1997) given in (V.4). The central value βX = 111◦ in (VI.3) is very close to this bound. Note that
the value of βX corresponding to this bound depends on the actual value of Br(K+ → π+νν̄) and Br(KL → π0νν̄)
as at this bound (B1 = B2) we have (Buras et al., 2004c)

(cotβX)Bound = − P̄c(X)

ε2
√
B2

. (VI.12)

For the central values of P̄c(X) and B2 found here the bound corresponds to βX = 107.3◦. As only cotβX and not
βX is directly determined by the values of the branching ratios in question, the angle βX is determined only up to
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FIG. 7 Br(K+ → π+νν̄) as a function of Br(KL → π0νν̄) for various values of βX (Buras et al., 2004c). The dotted horizontal
lines indicate the lower part of the experimental range (I.4) and the grey area the SM prediction. We also show the bound in
(V.4).

discrete ambiguities, seen already in Fig. 7. These ambiguities can be resolved by considering simultaneously other
quantities discussed in (Buras et al., 2004c).

Finally, we would like to emphasize one important feature of the correlation between B → πK decays and K → πνν̄
decays pointed out in (Buras et al., 2004c,d). The huge enhancement of Br(KL → π0νν̄) and only a small impact on
Br(K+ → π+νν̄) is related to θX < 0 that is required by the present B → πK data. This is directly a consequence
of the negative sign of the phase φ in the EW sector of the B → πK system. For φ > 0 and θX > 0 one would find
βX < β and a suppression of Br(KL → π0νν̄) with Br(K+ → π+νν̄) substantially enhanced.

C. General Discussion of θX and |X |

Clearly the data on B → ππ and B → πK could change in the future implying different set of the values than given
in (VI.3). In view of the data on B → Xsµ

+µ−, it is rather unlikely that |X | could be larger than given in (VI.3). In
what follows we will then assume that

1.25 ≤ |X | ≤ 2.25, −90◦ ≤ θX ≤ 90◦. (VI.13)

The inspection of the formulae (VI.4) and (VI.5) reveals then the following simple facts:

• Br(K+ → π+νν̄) can be very close to the SM prediction, still allowing for a substantial departure of Br(KL →
π0νν̄) from the SM expectations and strong violation of the relation (I.1).

• If Br(K+ → π+νν̄) is found experimentally to be significantly larger than the SM prediction, the bound on |X |
in (VI.13) implies that cosβX must be positive in order that the enhancement of |X | is not compensated by the
destructive interference of charm and top contributions. This in turn will also imply that Br(KL → π0νν̄) will
be less enhanced than found in (Buras et al., 2004c).

In Fig. 8, we show the ratio of the two branching ratios in question as a function of βX for three values of |X | =
1.25, 1.5, 2.0. We observe that for βX in the ballpark of 110◦ this ratio is very close to the bound in (V.4). However,
even for βX = 50◦ the ratio is close to unity and by a factor of 3 higher than in the SM.

Finally, in table XV, we give the values of Br(K+ → π+νν̄) and Br(KL → π0νν̄) for the range in (VI.13) keeping
β = 23.5◦ and |Vcb| = 41.5 · 10−3. In this context we would like to refer to scaling laws for FCNC processes pointed
out in (Buras and Harlander, 1992), from which it follows that the dependence of K → πνν̄ branching ratios on |Vcb|
and |X | is encoded in a single variable

Z = A2|X |. (VI.14)
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bound in (V.4).

This observation allows to make the following replacement in table XV

|X | → |X |eff =

[ |Vcb|
41.5 · 10−3

]2

|X |, (VI.15)

so that for |Vcb| 6= 41.5 · 10−3 the results in this table correspond to different values of |X | obtained by rescaling the
values for |X | there by means of (VI.15).

As beyond the SM the uncertainties in the value of |X | are substantially larger than the ones in |Vcb|, the error in
|Vcb| can be absorbed into the one of |X |eff .

TABLE XV Values of Br(K+ → π+νν̄) and of Br(KL → π0νν̄) (in parentheses) in units of 10−11 for different values of θX
and |X| with β = 23.5◦ and |Vcb| = 41.5 · 10−3.

θX/|X| 1.25 1.50 1.75 2.00 2.25

−90◦ 2.3 3.3 4.5 6.0 7.6

(10.1) (14.5) (19.8) (25.8) (32.7)

−60◦ 3.8 5.0 6.5 8.3 10.2

(12.1) (17.4) (23.6) (30.9) (39.1)

−30◦ 5.1 6.7 8.4 10.4 12.6

(8.1) (11.6) (15.8) (20.7) (26.1)

0◦ 6.0 7.8 9.7 11.9 14.3

(2.1) (3.0) (4.1) (5.4) (6.8)

30◦ 6.3 8.0 10.0 12.3 14.7

(0.11) (0.16) (0.22) (0.29) (0.36)

60◦ 5.8 7.4 9.3 11.5 13.8

(4.1) (5.9) (8.0) (10.5) (13.3)

90◦ 4.6 6.1 7.8 9.7 11.8

(10.1) (14.5) (19.8) (25.8) (32.7)
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D. New Complex Phases in the B0
d − B̄0

d Mixing

We next move to the scenario in which X = XSM but there are new contributions to B0
d− B̄0

d mixing. This scenario
has been considered in detail in many papers (Bergmann and Perez, 2000, 2001; Bertolini et al., 1987; D’Ambrosio and
Isidori, 2002; Laplace, 2002; Laplace et al., 2002; Nir and Silverman, 1990a,b), and lately in (Fleischer et al., 2003).
As summarized in the latter paper, this scenario can be realized in supersymmetric models with a) a heavy scale for
the soft-breaking terms, b) new sources of flavour symmetry breaking only in the soft-breaking terms which do not
involve the Higgs fields and c) Yukawa interactions very similar to the SM case. However, as emphasized in (Fleischer
et al., 2003) and discussed briefly in Section VII, this scenario is not representative for all supersymmetric scenarios,
in particular those with important mass insertions of the left-right type and Higgs mediated FCNC amplitudes with
large tanβ.

Let us recall that, in the presence of a complex function Sd, the off-diagonal term Md
12 in the neutral B0

d meson
mass matrix has the phase structure

Md
12 =

〈B0
d |H∆B=2

eff |B̄0
d〉

2mBd

∝ ei2βei2θd |Sd| (VI.16)

with |Sd| generally differing from S0(xt). If Ss remains unchanged, then

• The asymmetry aψKS
does not measure β but β + θd

• The expression for Rt in (II.44) becomes

rdRt = 0.920 r̃

[

ξ

1.24

] [

0.224

λ

]

√

18.4/ps

∆Ms

√

∆Md

0.50/ps
, r2d ≡

∣

∣

∣

∣

Sd
S0(xt)

∣

∣

∣

∣

. (VI.17)

As a consequence of these changes, the true angle β differs from the one extracted from aψKS
and also Rt and |Vtd|

will be modified if rd 6= 1.
The parameters (rd, θd) can then be determined for instance as in (Fleischer et al., 2003) by constructing the true

unitarity triangle with the help of Rb determined from |Vub/Vcb| and γ determined by using the CP asymmetry in
Bd → π+π−, the asymmetry aψKS

and some input from B → πK decays. As this determination of γ could in
principle suffer from new physics contributions, it should be replaced in the future by clean tree level strategies in B
decays, that will be available at LHC and BTeV and will be briefly discussed in Section VIII.

As X is not modified with respect to the SM, the impact on K → πνν̄ amounts exclusively to the change of the
true βeff and Rt in the formulae (III.1) and (III.15). A particular pattern of a possible impact on K → πνν̄ in the
scenario in question has been presented in (Fleischer et al., 2003). We summarize the results of this paper in the
following.

First let us recall that the measurement of aψKS
in (II.50) implies two solutions for β + θd:

β + θd ≈ 23◦, β + θd ≈ 67◦ . (VI.18)

The authors of (Fleischer et al., 2003) find then that

• In the case of the first solution, γ and Rt are found in the ballpark of the SM expectations and as the function
X is not modified, Br(K+ → π+νν̄) and Br(KL → π0νν̄) are only insignificantly affected by new physics
contributions. One finds then in accordance with our expectations at the end of Section IV.B that θd > 0 but
it is small and the true value of β is close to 20◦.

• In the case of the second solution, γ is found in the ballpark of 125◦, Rt is substantially larger than in the SM
but the true value of β with roughly 15◦ is significantly smaller than in the SM implying a large complex phase
θd ≈ 50◦. As a result of this pattern, Br(K+ → π+νν̄), being sensitive to Rt, is enhanced in this scenario up to
2 · 10−10. On the other hand η̄ = Rt sinβ is only insignificantly modified so that Br(KL → π0νν̄) turns out to
be close to the SM expectations although a slight suppression of this branching ratio could be expected. This
solution corresponds roughly to the overlap of the Br(K+) band in the upper part of Fig. 5 with the εK and
Rb constraints.

While this pattern is clearly possible, it does not represent the most general situation within the scenario considered.
The point is that, in the absence of a direct measurement of γ that is not polluted by new physics, the only true
values of the CKM parameters that we have to our disposal at present in a model independent manner, are the values
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of λ, |Vcb| and Rb. With the function X given in (II.11), the unitarity of the CKM matrix implies then the following
ranges

4.2 · 10−11 ≤ Br(K+ → π+νν̄) ≤ 16.9 · 10−11, (VI.19)

0 ≤ Br(KL → π0νν̄) ≤ 5.2 · 10−11. (VI.20)

If also SK = S0(xt), the εK constraint of (II.41) can also be taken into account implying more stringent ranges

5.8 · 10−11 ≤ Br(K+ → π+νν̄) ≤ 16.5 · 10−11, (VI.21)

0.6 · 10−11 ≤ Br(KL → π0νν̄) ≤ 3.6 · 10−11. (VI.22)

The most recent determination of (rd, θd), that uses the existing constraints on the UT, can be found in (Laplace,
2002; Laplace et al., 2002). Large ranges for these two parameters are still possible. An interesting discussion with
a different parametrization is also given in (D’Ambrosio and Isidori, 2002). On the other hand, once both K → πνν̄
branching ratios have been measured, the true values of β and Rt can be determined in this scenario from these decays
as in the SM. Comparing subsequently the obtained value of β with the value of aψKS

one could determine θd. The
parameter rd can then be extracted from (VI.17).

In summary, we do not expect significant enhancement of Br(KL → π0νν̄) in this scenario but a substantial
suppression of this branching ratio is still possible. On the other hand a significant enhancement of Br(K+ → π+νν̄)
cannot yet be excluded at present.

E. A Hybrid Scenario

The situation is more involved if new physics effects enter both X and S. Similarly to previous two scenarios, the
golden relation in (I.1) is violated, but now the structure of a possible violation is more involved

[sin 2(β − θX)]πνν̄ 6= [sin 2(β + θd)]ψKS
. (VI.23)

Since θX originates in new contributions to the decay amplitude K → πνν̄ and θd in new contributions to the B0
d−B̄0

d
mixing, it is very likely that θX 6= θd.

The most straightforward strategy to disentangle new physics contributions in K → πνν̄ and the B0
d − B̄0

d mixing
in this scenario is to use the reference unitarity triangle that results from the (Rb, γ) strategy. Having the true CKM
parameters at hand, one can determine θX and |X | from K → πνν̄ and θd and |Sd| from the B0

d − B̄0
d mixing and

aψKS
.

In order to illustrate these ideas in explicit terms let us investigate, in the rest of this section, how the presence of
new contributions in K → πνν̄ and the B0

d − B̄0
d mixing could be signaled in the (¯̺, η̄) plane.

Beginning with K → πνν̄, let us write

X = rXXSMe
iθX . (VI.24)

Then formulae (VI.4) and (VI.5) apply with

|X | → XSM, Rt → rXRt. (VI.25)

We proceed then as follows:

• From the measured Br(K+ → π+νν̄) and Br(KL → π0νν̄) we determine the “fake” angle β in the unitarity
triangle with the help of (VI.6). We denote this angle by βX , that we defined in (VI.2). In what follows we
neglect βs but it can be taken straightforwardly into account if necessary.

• The height of the fake UT from K → πνν̄ is then given by

η̄πνν̄ = rXRt sinβX =

√
B2

r̃A2XSM
, (VI.26)

where we set ε2 = +1 in order to be concrete. As seen this height can be found from Br(KL → π0νν̄) and XSM.
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Now let us go to the B0
d − B̄0

d mixing where we introduced the parameter rd defined in (VI.17). We proceed then
as follows:

• The asymmetry aψKS
determines the fake angle β, that we denote by βd = β + θd.

• The fake side Rt, to be denoted by (Rt)d, is now given as follows

(Rt)d = rdRt. (VI.27)

It can be calculated from (VI.17) subject to uncertainties in ξ.

Clearly, generally the fake UT’s resulting from K → πνν̄ and the (∆Md/∆Md, β) strategy, discussed above, will
differ from each other, from the true reference triangle and also from the UT obtained from the (γ, β) and (η̄, γ)
strategies, if the determinations of η̄ and β are polluted by new physics.

We show these five different triangles in Fig. 9. Comparing the fake triangles with the reference triangle, all new
physics parameters in K → πνν̄ and B0

d − B̄0
d mixing can be easily extracted.
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FIG. 9 Fake unitarity triangles as discussed in the text compared to the reference triangle. ∆βX = −θX .

F. Correlation between Br(KL → π0νν̄) and Br(B → Xs,dνν)

The branching ratios for the inclusive rare decays B → Xs,dνν can be written in the models with a new complex
phase in X as follows (Buras et al., 2004c) (q = d, s)

Br(B → Xqνν) = 1.58 · 10−5

[

Br(B → Xceν)

0.104

]
∣

∣

∣

∣

Vtq
Vcb

∣

∣

∣

∣

2 [
0.54

f(z)

]

|X |2, (VI.28)

where f(z) = 0.54±0.04 is the phase-space factor for B → Xceν with z = m2
c/m

2
b , and Br(B → Xceν) = 0.104±0.004.

Formulae (VI.5) and (VI.28) imply interesting relations between the decays KL → π0νν̄ and B → Xs,dνν that are
generalizations of a similar relations within the MFV models (Bergmann and Perez, 2000, 2001; Buras and Fleischer,
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2001) to the scenario considered here

Br(KL → π0νν̄)

Br(B → Xsνν̄)
=

κL
1.58 · 10−5

[

0.104

Br(B → Xceν̄)

] [

f(z)

0.54

]

A4R2
t sin2 βX , (VI.29)

Br(KL → π0νν̄)

Br(B → Xdνν̄)
=

κL
1.58 · 10−5

[

0.104

Br(B → Xceν̄)

] [

f(z)

0.54

]

A4r̃2

λ2
sin2 βX . (VI.30)

The experimental upper bound on Br(B → Xsνν) reads (Barate et al., 2001)

Br(B → Xsνν) < 6.4 · 10−4 (90% C.L.). (VI.31)

Using this bound and setting Rt = 0.95, f(z) = 0.58 and Br(B → Xceν) = 0.10, we find from (VI.29) the upper
bound

Br(KL → π0νν̄) ≤ 4.4 · 10−9(sinβX)2 =

{

7.5 · 10−10 βX = 24.5◦

3.9 · 10−9 βX = 111◦
(VI.32)

at 90% C.L. for the MFV models and the scenario of Section VI.B, respectively. In the case of the MFV models
this bound is weaker than the bound in (V.7) but, as the bound in (VI.31) should be improved in the B-factory era,
the situation could change in the next years. Concerning the scenario with a complex phase θX of Section VI.B, no
useful bound on Br(KL → π0νν̄) from (VI.31) results at present as the bound in (VI.32) is weaker than the model
independent bound in (V.6).

VII. K → πνν̄ IN SELECTED NEW PHYSICS SCENARIOS

A. Preliminaries

In this section we will briefly review the results for decays K+ → π+νν̄ and KL → π0νν̄ in selected new physics
scenarios. Our goal is mainly to indicate the size of new physics contributions in the branching ratios in question. Due
to several free parameters present in some of these extensions the actual predictions for the branching ratios are not
very precise and often depend sensitively on some of the parameters involved. The latter could then be determined
or bounded efficiently once precise data on K → πνν̄ and other rare decays will be available. While we will only
present the results for Br(K+ → π+νν̄) and Br(KL → π0νν̄), most of the analyses discussed below used all available
constraints from other observables known at the time of a given analysis. A detailed analysis of these constraints is
clearly beyond the scope of this review. A general discussion of K → πνν̄ beyond the SM can be found in (Grossman
and Nir, 1997). In writing this section we also benefited from (D’Ambrosio and Isidori, 2002; Isidori, 2003).

B. MSSM with MFV

There are many new contributions in MSSM such as charged Higgs, chargino, neutralino and gluino contributions.
However, in the case of minimal flavour and CP violation it is a good approximation to keep only charged Higgs and
chargino contributions.

To our knowledge the first analyses of K → πνν̄ in this scenario can be found in (Bertolini and Masiero, 1986; Bigi
and Gabbiani, 1991; Giudice, 1987; Mukhopadhyaya and Raychaudhuri, 1987), subsequently in (Couture and Konig,
1995; Goto et al., 1998) and the last in (Buras et al., 2001a). In the latter analysis constraints on the supersymmetric
parameters from εK , ∆Md,s, B → Xsγ, ∆̺ in the electroweak precision studies and from the lower bound on the
neutral Higgs mass have been imposed. Supersymmetric contributions affect both the loop functions like X(v) present
in the SM and the values of the extracted CKM parameters like |Vtd| and Imλt. As the supersymmetric contributions
to the function S(v) relevant for the analysis of the UT are always positive, the extracted values of |Vtd| and Imλt
are always smaller than in the SM. Consequently, Br(K+ → π+νν̄) and Br(KL → π0νν̄), that are sensitive to |Vtd|
and Imλt, respectively, are generally suppressed relative to the SM expectations. The supersymmetric contributions
to the loop function X(v) can compensate the suppression of |Vtd| and Imλt only for special values of supersymmetric
parameters, so that in these cases the results are very close to the SM expectations.
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Setting λ, |Vub| and |Vcb|, all unaffected by SUSY contributions, at their central values one finds (Buras et al.,
2001a)

0.65 ≤ Br(K+ → π+νν̄)

Br(K+ → π+νν̄)SM
≤ 1.02, 0.41 ≤ Br(KL → π0νν̄)

Br(KL → π0νν̄)SM
≤ 1.03. (VII.33)

We observe that significant suppressions of the branching ratios relative to the SM expectations are still possible.
More importantly, finding experimentally at least one of these branching ratios above the SM value would exclude
this scenario, indicating new flavour violating sources beyond the CKM matrix. Similarly, in the MSSM based on
supergravity a reduction of both K → πνν̄ rates up to 10% is possible (Goto et al., 1998).

Reference (Buras et al., 2001a) provides a compendium of phenomenologically relevant formulae in the MSSM, that
should turn out to be useful once the relevant branching ratios have been accurately measured and the supersymmetric
particles have been discovered at Tevatron, LHC and the e+e− linear collider. The study of the unitarity triangle can be
found in (Ali and London, 1999a,b,c, 2001). The inclusion of NLO QCD corrections to the processes discussed in (Buras
et al., 2001a) has been performed in (Bobeth et al., 2002). These corrections reduce mainly the renormalization scale
uncertainties present in the analysis of (Buras et al., 2001a), without modifying the results in (VII.33) significantly.

C. General Supersymmetric Models

In general supersymmetric models the effects of supersymmetric contributions to rare branching ratios can be
larger than discussed above. In these models new CP-violating phases and new operators are present. Moreover the
structure of flavour violating interactions is much richer than in the MFV models. Interestingly, due to the V − A
structure of the ν̄ν current, the only additional new operator is (s̄d)V+A(ν̄ν)V−A if the neutrino masses are neglected.
As the hadronic matrix elements of (s̄d)V+A and (s̄d)V−A are the same,4 also the effects of this new operator can be
included in the function X . But in contrast to the MFV models, the function X can now be a complex quantity as
in the scenarios of Section VI. Moreover as there are new flavour violating interactions, new physics contributions
are not governed by the CKM matrix and even if they contain some CKM dependence it is not simply given by an
overall factor λt. This means that, writing the final expressions in terms of λtX only, necessarily puts some CKM
dependence into X .

The new flavour violating interactions are present because generally the sfermion mass matrices can be non-diagonal
in the basis in which all neutral quark-squark-gaugino vertices and quark and lepton mass matrices are flavour diagonal.
Instead of diagonalizing sfermion mass matrices it is convenient to consider their off-diagonal terms as new flavour
violating interactions. This so–called mass–insertion approximation (Hall et al., 1986) has been reviewed in the classic
papers (Gabbiani et al., 1996; Misiak et al., 1998), where further references can be found.

In the context of the K → πνν̄ decays the most extensive analyses using the mass insertion method can be found in
(Buras et al., 2000, 1998; Colangelo and Isidori, 1998; Nir and Worah, 1998). It turns out that sizeable enhancements

of K → πνν̄ rates can only be generated by chargino-mediated diagrams with a large ũiL − ũ
j
R mixing. The most

recent of these papers (Buras et al., 2000), finds the upper bounds

Br(K+ → π+νν̄) ≤ 1.7 · 10−10, Br(KL → π0νν̄) ≤ 1.2 · 10−10. (VII.34)

Larger values are possible, in principle, but rather unlikely. Moreover, as discussed in detail in (Buras et al., 1998),
in these models the MFV relation in (I.1) can be violated due to the presence of a new phase θX . A rough estimate
shows that this phase could be as large as ±25◦. This is not as large as found in (Buras et al., 2004c,d) and in Section
VI but still with βX ≈ 50◦, as seen in Fig. 7 and 8, sizable departures from the SM are found.

Very recently the rare decaysK+ → π+νν̄ and KL → π0νν̄ have been reanalyzed in a general MSSM with conserved
R-parity (Buras et al., 2004a). Working in the mass eigenstate basis and performing the so-called adaptive scanning
of a large space of supersymmetric parameters, 16 parameters in the reduced scan and 66 in the extended scan, the
authors of (Buras et al., 2004a) find that large departures from the Standard Model expectations are still possible while
satisfying all existing constraints. Both branching ratios can be as large as few times 10−10 with Br(KL → π0νν̄)
often larger than Br(K+ → π+νν̄) and close to its model independent upper bound. In particular the results of
(Buras et al., 2004c,d) can be obtained. The supersymmetric effects thus turn out to be larger than found in (Buras
et al., 2000). This is partly due to the fact that mass insertion approximation in contrast to (Buras et al., 2000) has
not been used and consequently no assumptions on the dominance of a single mass insertion as done usually in the

4 QCD is insensitive to the sign of γ5.
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literature had to be made. The second reason is the exploration of much larger space of parameters that was possible
in a reasonable time only by using specially designed Monte Carlo techniques.

As emphasized in (Buras et al., 2000; Buras and Silvestrini, 1999), there exist correlations betweenK → πνν̄ decays,
KL → µ+µ− and ε′/ε, that could bound the size of the enhancement of Br(K+ → π+νν̄) and Br(KL → π0νν̄).
Unfortunately, the hadronic uncertainties in KL → µ+µ− and in particular in ε′/ε lower the usefulness of these
correlations at present. More promising, in the context of supersymmetric models and also generally, appear the
correlations between K → πνν̄ and rare FCNC semileptonic decays like B → Xs,dl

+l−, Bs,d → l+l− and in particular
B → Xs,dνν̄, because also in these decays the main deviations from the SM can be encoded in an effective Zb̄q (q = s, d)
vertex (Atwood and Hiller, 2003; Buchalla et al., 2001). We have discussed the correlation with B → Xs,dνν̄ in the
previous section.

A systematic study of K → πνν̄ decays in flavour supersymmetric models has been performed in (Nir and Raz,
2002; Nir and Worah, 1998). These particular models are designed to solve naturally the CP and flavour problems
characteristic for supersymmetric theories.5 They are more constrained than the general supersymmetric models just
discussed, in which parameters are tuned to satisfy the experimental constraints.

Models with exact universality of squark masses at a high energy scale with the A terms proportional to the
corresponding Yukawa couplings, models with approximate CP, quark and squark alignment, approximate universality
and heavy squarks have been analyzed in (Nir and Raz, 2002; Nir and Worah, 1998) in general terms. It has been
concluded that in most of these models the impact of new physics on K → πνν̄ is sufficiently small so that in these
scenarios one can get information on the CKM matrix from these decays even in the presence of supersymmetry.
On the other hand, supersymmetric contributions to B0

d − B̄0
d mixing in models with alignment, with approximate

universality and heavy squarks can significantly affect the asymmetry aψKS
, so that in these models the golden relation

(I.1) can be violated.
Finally, in supersymmetric models with non-universal A terms, enhancements of Br(K+ → π+νν̄) and Br(KL →

π0νν̄) up to 1.5 · 10−10 and 2.5 · 10−10 are possible, respectively (Chen, 2002). Significant departures from the SM
expectations have also been found in supersymmetric models with R-parity breaking (Deandrea et al., 2004).

D. Models with Universal Extra Dimensions

The decays K+ → π+νν̄ and KL → π0νν̄ have been studied in the SM model with one extra universal dimension in
(Buras et al., 2003d). In this model (ACD) (Appelquist et al., 2001) all the SM fields are allowed to propagate in all
available dimensions and the relevant penguin and box diagrams receive additional contributions from Kaluza-Klein
(KK) modes. This model belongs to the class of MFV models and the only additional free parameter relative to
the SM is the compactification scale 1/R. Extensive analyses of the precision electroweak data, the analyses of the
anomalous magnetic moment of the muon and of the Z → bb̄ vertex have shown the consistency of the ACD model
with the data for 1/R ≥ 300 GeV. We refer to (Buras et al., 2004e, 2003d) for the list of relevant papers.

For 1/R = 300 GeV and 1/R = 400 GeV the function X is found with mt = 167 GeV to be X = 1.67 and X = 1.61,
respectively. This should be compared with X = 1.53 in the SM. In contrast to the analysis in the MSSM discussed
in (Buras et al., 2001a) and above, this 5−10% enhancement of the function X is only insignificantly compensated by
the change in the values of the CKM parameters. Consequently, the clear prediction of the model are the enhanced
branching ratios Br(K+ → π+νν̄) and Br(KL → π0νν̄), albeit by at most 15% relative to the SM expectation. These
enhancements allow to distinguish this scenario from the MSSM with MFV.

The enhancement of Br(K+ → π+νν̄) in the ACD model is interesting in view of the experimental results in (I.5)
with the central value by a factor of 1.8 higher than the central value in the SM. Even if the errors are substantial
and this result is compatible with the SM, the ACD model with a low compactification scale is closer to the data.
In table XVI we show the upper bound on Br(K+ → π+νν̄) in the ACD model obtained in (Buras et al., 2003d)
by means of the formula (III.10), with X replaced by its enhanced value in the model in question. To this end
|Vcb| ≤ 0.0422, Pc(X) < 0.47, mt(mt) < 172 GeV and sin 2β = 0.734 have been used. Table XVI illustrates the
dependence of the bound on the nonperturbative parameter ξ, 1/R and ∆Ms. We observe that for 1/R = 300 GeV
and ξ = 1.30 the maximal value for Br(K+ → π+νν̄) in the ACD model is rather close to the central value in (I.5).

Clearly, in order to distinguish these results and the ACD model from the SM, other quantities, that are more
sensitive to 1/R, should be simultaneously considered. In this respect, the sizable downward shift of the zero (ŝ0) in
the forward-backward asymmetry AFB in B → Xsµ

+µ− and the suppression of Br(B → Xsγ) by roughly 20% at
1/R = 300 GeV appear to be most interesting (Buras et al., 2004e).

5 See the review in (Grossman et al., 1998b).
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TABLE XVI Upper bound on Br(K+ → π+νν̄) in units of 10−11 for different values of ξ, 1/R and ∆Ms = 18/ps (21/ps) from
(Buras et al., 2003d).

ξ 1/R = 300 GeV 1/R = 400 GeV SM

1.30 12.0 (10.7) 11.3 (10.1) 10.8 (9.3)

1.25 11.4 (10.2) 10.7 (9.6) 10.3 (8.8)

1.20 10.7 (9.6) 10.1 (9.1) 9.7 (8.4)

1.15 10.1 (9.0) 9.5 (8.5) 9.1 (7.9)

E. Models with Lepton-Flavour Mixing

In the presence of flavour mixing in the leptonic sector, the transition KL → π0νiν̄j , with i 6= j could receive
significant CP-conserving contributions (Grossman and Nir, 1997). Subsequently this issue has been analyzed in
(Perez, 1999, 2000) and recently in (Grossman et al., 2004). Here we summarize briefly the main findings of these
papers.

In (Perez, 1999, 2000) the effect of light sterile right-handed neutrinos leading to scalar and tensor dimension-six
operators has been analyzed. As shown there, the effect of these operators is negligible, if the right-handed neutrinos
interact with the SM fields only through their Dirac mass terms.

Larger effects are expected from the operators

Oijsd = (s̄γµd)(ν̄
i
Lγµν

j
L), (VII.35)

that for (i 6= j) create a neutrino pair which is not a CP eigenstate. As shown in (Grossman et al., 2004) the condition
for a non-vanishing KL → π0νν̄ rate in this case is rather strong. One needs either CP violation in the quark sector
or a new effective interaction that violates both quark and lepton universality. One finds then the following pattern
of effects:

• If the source of universality breaking is confined to mass matrices, the effects of lepton-flavour mixing get
washed out in the K → πνν̄ rates after the sum over the neutrino flavours has been done. There are in principle
detectable effects of lepton mixing only in cases where there are two different lepton-flavour mixing matrices,
although they cannot be large.

• In models in which simultaneous violation of quark and lepton universality proceeds entirely through Yukawa
couplings, the CP conserving effects in K → πνν̄ are suppressed by Yukawa couplings. As explicitly shown
in (Grossman et al., 2004) even in the MSSM with flavour violation and large tanβ these types of effects are
negligible.

• In exotic scenarios, such as R-parity violating supersymmetric models, lepton flavour mixing could generate
sizable CP-conserving contributions to KL → π0νν̄ and generally in K → πνν̄ rates.

F. Other Models

There exist other numerous analyses of K → πνν̄ decays within various extensions of the SM. For completeness we
briefly describe them here.

In (Carlson et al., 1996) the rate for KL → π0νν̄ has been calculated in several extensions of the SM Higgs sector,
including the Liu-Wolfenstein two-doublet model of spontaneous CP- violation and the Weinberg three doublet model.
It has been concluded that although in the usual two Higgs doublet model, with CP-violation governed by the CKM
matrix, some measurable effects could be seen, in models in which CP-violation arises either entirely or predominantly
from the Higgs sector the decay rate is much smaller than in the SM.

Similarly, in supersymmetric models with large tanβ and no new CP-violating phases, the new physics contributions
to K → πνν̄ decays are negligible (Buras et al., 2002, 2003a). This is because the usual charged Higgs and chargino
contributions to these decays are suppressed for large tanβ and the flavour changing Higgs penguins, that for tanβ ≈
40 can enhance Bd,s → µ+µ− rates by 2-3 orders of magnitude, give negligible contributions to K → πνν̄ because of
the tiny neutrino masses.

The study of K → πνν̄ in models with four generations, extra vector-like quarks and isosinglet down quarks can be
found in (Aguilar-Saavedra, 2003; Hattori et al., 1998; Hawkins and Silverman, 2002; Huang et al., 2001; Hung and
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Soddu, 2002; Yanir, 2002). In particular in four generation models (Hattori et al., 1998; Huang et al., 2001; Yanir,
2002) due to three additional mixing angles and two additional complex phases, Br(KL → π0νν̄) can be enhanced by
1-2 orders of magnitude with respect to the SM expectations and also Br(K+ → π+νν̄) can be significantly enhanced.
Unfortunately, due to many free parameters, the four generation models are not very predictive. Very recently a new
analysis of K → πνν̄ in a model with an extra isosinglet down quark appeared in (Deshpande et al., 2004). Putting
all the available constraints on the parameters of this model, the authors conclude that Br(K+ → π+νν̄) can still be
enhanced up to the present experimental central value, while Br(KL → π0νν̄) can reach 1 · 10−10.

The decays K → πνν̄ have also been investigated in a seesaw model for quark masses (Kiyo et al., 1999). In this
model there are scalar operators (s̄d)(ν̄τ ντ ), resulting from LR box diagrams, that make the rate for KL → π0νν̄
non-vanishing even in the CP conserving limit and in the absence of lepton-flavour mixing. But the enhancement of
Br(KL → π0νν̄) due to these operators is at most of order 30% even for MWR

= 500 GeV with a smaller effect in
Br(K+ → π+νν̄).

The effects of the electroweak symmetry breaking on rare K and B decays, including K → πνν̄, in the presence of
new strong dynamics, have been worked out in (Buchalla et al., 1996b; Burdman, 1997). Deviations from the SM in
K → πνν̄ have been shown to be correlated with the ones in B decays (Burdman, 1997).

The implications of a modified effective Zbb̄ vertex on K → πνν̄, in connection with the small disagreement
between the SM and the measured asymmetry AbFB at LEP, have been discussed in (Chanowitz, 1999, 2001). While
the predictions are rather uncertain, an enhancement of Br(K+ → π+νν̄) by a factor of two, towards the central
experimental value, is possible.

Recently (He and Valencia, 2004) the decays K → πνν̄ have been analyzed in models that are variations of left-
right symmetric models in which right-handed interactions, involving in particular a heavy Z ′ boson, single out the
third generation (He and Valencia, 2002, 2003). The contributions of these new non-universal FCNC interactions
appear both at the tree and one-loop level. The tree level contributions involving Z ′ of the type (s̄d)V+A(ν̄τντ )V+A

can be severely constrained by other rare decays, εK and in particular B0
s − B̄0

s mixing, when it will be measured.
Still, they can enhance Br(K+ → π+νν̄) to the central experimental value in (I.5) and Br(KL → π0νν̄) could be
as high as 1.4 · 10−10. These enhancements are accompanied by an enhancement of ∆Ms and finding ∆Ms in the
ballpark of the SM expectations would significantly weaken these enhancements. On the other hand new one loop
contributions involving Z ′ boson are not constrained by B0

s − B̄0
s mixing and can give significant enhancements of

both branching ratios even if ∆Ms ≈ (∆Ms)SM . Unfortunately the presence of many free parameters in these new
one loop contributions does not allow to make definite predictions.

Enhancement of both K → πνν̄ branching ratios up to 50% has been found in a five dimensional split fermions
scenario (Chang and Ng, 2002) and the decay K+ → π+νν̄ turns out to be the best for providing the constraints on
the bulk SM in the Randall-Sundrum scenario (Burdman, 2002).

G. Summary

We have seen in this and the previous section that many scenarios of new physics allow still for significant enhance-
ments of both Br(K+ → π+νν̄) and Br(KL → π0νν̄): Br(K+ → π+νν̄) can still be enhanced by factors of 2-3 and
Br(KL → π0νν̄) could be by an order of magnitude larger than expected within the SM. While for obvious reasons
most of the papers concentrate on possible enhancements of both branching ratios, their suppressions in several sce-
narios are still possible. This is in particular the case of the MSSM with MFV and in several models in which CP
violation arises from the Higgs sector.

Because most models contain several free parameters, definite predictions for K → πνν̄ can only be achieved
by considering simultaneously as many processes as possible so that these parameters are sufficiently constrained.
Interesting in this respect, as emphazised in Section VI, is the correlation between the sign of the new complex phase
in the EW penguin sector signaled by data on B → πK decays and the enhancement of Br(KL → π0νν̄).

VIII. COMPARISON WITH OTHER DECAYS

After this exposition of K+ → π+νν̄ and KL → π0νν̄ decays in the SM and its most studied extensions we would
like to compare the potential of these two clean rare decays in extracting the CKM parameters and in testing the
SM and its extensions with other prominent K and B decays for which a rich literature exists. A subset of relevant
references will be given below.
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A. K Decays

In theK system, the most investigated in the past are the parameters εK and the ratio ε′/ε that describe respectively
the indirect and direct CP violation in KL → ππ decays and the rare decays KL → µ+µ− and KL → π0e+e−. None
of them can compete in the theoretical cleanness with the decays considered here but some of them are still useful.

First, the decayKL → µ+µ− is fully dominated by the absorptive part that can be very reliably predicted in terms of
the KL → γγ rate but is insensitive to the short distance physics. The short distance contributions to KL → µ+µ−,
that originate in Z0 penguins and box diagrams as in the K → πνν̄ decays, are by itself theoretically very clean
and are known including NLO QCD corrections (Buchalla and Buras, 1999). Unfortunately, these contributions
are hidden in the dispersive contribution to KL → µ+µ− that contains also a long distance component which is
very difficult to estimate. In spite of many efforts to estimate the room left for the short distance part in the
rate for this decay, the situation is rather unsatisfactory (D’Ambrosio et al., 1998b; Gomez Dumm and Pich, 1999;
Greynat and de Rafael, 2003; Isidori and Unterdorfer, 2004; Knecht et al., 1999; Valencia, 1998). In the SM one
finds Br(KL → µ+µ−)SD = (8 ± 3) · 10−10. While the chapter on the extraction of this component from the data
is certainly not closed, let us quote the estimate of (D’Ambrosio et al., 1998b; Isidori and Unterdorfer, 2004), which
reads

Br(KL → µ+µ−)SD ≤ 2.5 · 10−9. (VIII.36)

It can be used to bound new physics contributions, in particular those coming from enhanced Z0 penguins. Here the
master function Y (v) (Buras, 2003a,b, 2004), instead of X(v), plays the crucial role. It is slightly more sensitive to
new physics contributions than X(v) due to smaller importance of box diagrams but possible upper bounds on Y (v)
resulting from (VIII.36) should be considered with care. In any case one should not expect that KL → µ+µ− will
play an important role in the determination of the CKM parameters unless some important progress in understanding
non-perturbative dynamics will be made. On the other hand it can be used as a rough tool in excluding certain new
physics scenarios, as it already played in devising the GIM mechanism thirty years ago.

Much more promising is the decay KL → π0e+e− that has been a subject of interest already for many years (Cohen
et al., 1993; D’Ambrosio et al., 1998a; Donoghue and Gabbiani, 1995; Ecker et al., 1987; Gilman and Wise, 1980)
It is similarly to KL → π0νν̄ dominated by CP-violating (CPV) contributions but the direct CPV component is
subdominant at least in the SM. The decay KL → π0e+e− has recently been reconsidered within the SM (Buchalla
et al., 2003) in view of new NA48 data on KS → π0e+e− and KL → π0γγ (Lai et al., 2003; Lazzeroni, 2003), which
allow a much better evaluation of the CP-conserving (CPC) and indirectly (mixing) CPV contributions. The CPC
part is found to be below 3 ·10−12. Moreover, in the SM the indirectly (mixing) CPV contribution and the interference
of both CPV contributions dominate the branching ratio in question, while the directly CPV contribution alone is
significantly smaller and in the ballpark of 4 · 10−12. Very recently an independent analysis in (Friot et al., 2004)
obtained similar results. In particular the intereference between the indirectly and directly CPV contributions has
been found to be constructive in accordance with the findings in (Buchalla et al., 2003).

In the first scenario of Section VI, the SM pattern of CPV contributions is significantly changed (Buras et al.,
2004c), with the directly CPV contribution becoming dominant. Indeed, similar to Br(KL → π0νν̄), the directly
CPV contribution to Br(KL → π0e+e−) is enhanced by more than one order of magnitude.

Explicit expression for the branching ratio in the SM including all contributions can be found in (Buchalla et al.,
2003) and its generalization to the first scenario of Section VI has been presented in (Buras et al., 2004c). Again,
as in the case of KL → µ+µ−, the short distance directly CPV component can be calculated very reliably, although
due to the presence of ordinary γ penguins, the NLO result of (Buras et al., 1994a) has slightly larger theoretical
uncertainties than the results for K → πνν̄ decays. However, the presence of the indirectly CPV contribution that
is dominant in the SM and its most extensions, limits the precision on this decay at least at present. A precise
measurement of Br(KS → π0e+e−), hopefully available from KLOE at Frascati one day, that could give a good
estimate of the indirectly CPV component, could promote KL → π0e+e− to the leading decays in testing the SM and
its extensions. But the fact that the directly CPV component is generally subdominant in this decay does not allow
KL → π0e+e− to compete with K+ → π+νν̄ and in particular with KL → π0νν̄.

The present experimental bound from KTeV (Alavi-Harati et al., 2004),

Br(KL → π0e+e−) < 2.8 · 10−10 (90% C.L.), (VIII.37)

should be compared with the SM prediction (Buchalla et al., 2003; Isidori et al., 2004),

Br(KL → π0e+e−)SM = (3.7+1.1
−0.9) · 10−11 (VIII.38)

and with a very similar result (3.7± 0.4) · 10−11 obtained recently in (Friot et al., 2004).



46

In the first scenario of Section VI one finds (Buras et al., 2004c; Isidori et al., 2004)

Br(KL → π0e+e−)NP
EXP = (9.0± 1.6) · 10−11, (VIII.39)

which is lower than the upper bound in (VIII.37) by only a factor of 3.
Very recently also the decay KL → π0µ+µ− has been reconsidered within the SM (Isidori et al., 2004). Again,

here the three components are present with the CPC contribution playing significantly more important role than in
KL → π0e+e−. Fortunately this component can be estimated rather reliably (Isidori et al., 2004) and one finds for
the full branching ratio (Isidori et al., 2004)

Br(KL → π0µ+µ−)SM = (1.5± 0.3) · 10−11, (VIII.40)

to be compared with the experimental bound (Alavi-Harati et al., 2000a)

Br(KL → π0µ+µ−) < 3.8 · 10−10 (90% C.L.). (VIII.41)

The indirectly CPV and the CPC contributions are roughly of the same size and contribute together 2/3 of the
full branching ratio. The rest comes from the interference of the CPV contributions and the direct CPV contribution
alone. Of particular interest is the finding that the pure direct CPV component in KL → π0µ+µ− contributes roughly
14% to the branching ratio to be compared with 7% in the case of KL → π0e+e−. Consequently KL → π0µ+µ− is
more sensitive to new physics contributions. Indeed, in the new physics scenario of (Buras et al., 2004c,d), that we
discussed in Section VI.B, the authors of (Isidori et al., 2004) find

Br(KL → π0µ+µ−)NP
EWP = (4.3± 0.7) · 10−11, (VIII.42)

that is an enhancement of the SM branching ratio by a factor of 3 to be compared to 2.4 in the case of the π0e+e−

channel. Similarly to the latter case the direct CPV component dominates Br(KL → π0µ+µ−) in this scenario.
While not as clean as K → πνν̄, the decays KL → π0µ+µ− and KL → π0e+e− will certainly play an important

role in future investigations. In particular, as emphasized in (Isidori et al., 2004), the simultaneous consideration of
these two decays can similarly to the K → πνν̄ complex give deeper insight into short distance dynamics. A plot of
Br(KL → π0µ+µ−) versus Br(KL → π0e+e−) in the spirit of Fig. 7 can be found in (Isidori et al., 2004).

Much worse is the situation with ε′/ε. In principle, ε′/ε could be a very good quantity to bound the size of the
electroweak penguins as it is very sensitive to this component, but a very poor knowledge of the hadronic matrix
elements of QCD-penguin operators, that dominate this ratio, precludes its usefulness in testing the SM and its
extensions efficiently at present. This is unfortunate because experimentalists, after many efforts, succeeded in
measuring ε′/ε with an accuracy of ±10% (Alavi-Harati et al., 1999, 2003; Batley et al., 2002; Lai et al., 2001). A
recent review with relevant references can be found in (Buras and Jamin, 2004).

Finally a comment on εK should be made. Our view here is probably more optimistic than some other views
exposed in the literature. The dominant uncertainty here is the parameter B̂K that is known still only to ±15%.
The remaining uncertainties connected with |Vcb| and mt should be decreased in the coming years to an acceptable
level. The fate of the usefulness of εK lies then in the hands of lattice gauge theorists. However, the fact that the
non-perturbative uncertainties here can be collected in one single factor, makes εK superior to many non-leptonic B
decays for which hadronic matrix elements are very difficult to calculate in QCD.

In summary, in the K system, K → πνν̄ decays have no competition from other decays, but the KL → π0l+l−

complex and the parameter εK may in due time contribute to the precision tests of flavour dynamics.

B. B Decays

The situation with B decays is very different. First of all there are many more channels than in K decays, which
allows to eliminate or reduce many hadronic uncertainties by simultaneously considering several decays and using
flavour symmetries. Also the fact that now the b quark mass is involved in the effective theory allows to calculate
hadronic amplitudes in an expansion in the inverse power of the b quark mass and invoke related heavy quark effective
theory, heavy quark expansions, QCD factorization for non-leptonic decays, perturbative QCD approach and others.
During the last years considerable advances in this field have been made (Battaglia et al., 2003). While in semi-leptonic
tree level decays this progress allowed to decrease the errors on the elements |Vub| and |Vcb| (Battaglia et al., 2003), in
the case of prominent radiative decays like B → Xsγ and B → Xsl

+l−, these methods allowed for a better estimate
of hadronic uncertainties. In addition during last decade and in this decade theoretical uncertainties in these decays
have been considerably reduced through the computations of NLO and in certain cases NNLO QCD corrections (Ali,
2003; Buchalla, 2003; Buchalla et al., 1996a; Buras, 1998; Fleischer, 2002, 2004; Hurth, 2003; Nir, 2001).
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In the case of non-leptonic decays, various strategies for the determination of the angles of the unitarity triangle
have been proposed. Excellent reviews of these strategies have been given by Fleischer in (Fleischer, 2002, 2004). See
also (Buras, 2003a,b, 2004) and (Ali, 2003; Buchalla, 2003; Hurth, 2003; Nir, 2001). These strategies generally use
simultaneously several decays and are based on plausible dynamical assumptions that can be furthermore tested by
invoking still other decays.

There is no doubt that these methods will give us considerable insight into flavour and QCD dynamics but it is fair
to say that most of them cannot match the K → πνν̄ decays with respect to the theoretical cleanness. On the other
hand there exist a number of strategies for the determination of the angles and also sides of the unitarity triangle
that certainly can compete with the K → πνν̄ complex and in certain cases are even slightly superior to it, provided
corresponding measurements can be made precisely. These are the strategies which we will briefly discuss in what
follows.

Let us first recall that, among the theoretically cleanest strategies for the determination of the angles of the
unitarity triangle, are in principle the decays of B0

d and B0
s into CP eigenstates. With the help of time dependent CP

asymmetries in these decays a theoretically clean measurement of the CKM phases can be made, provided the decay
amplitude is dominated by a single weak phase. The exposition of these methods can be found in (Ali, 2003; Anikeev
et al., 2001; Ball et al., 2000; Buchalla, 2003; Buras, 2003a,b, 2004; Fleischer, 2002, 2004; Harrison and Quinn, 1998;
Hurth, 2003; Nir, 2001) and the original papers quoted below.

The classic example here is the mixing induced CP asymmetry in the decays B0
d(B̄

0
d) → ψKS that allows within

the SM a direct measurement of the angle β in the UT without any theoretical uncertainties (Bigi and Sanda, 1981;
Carter and Sanda, 1980, 1981). As discussed recently (Boos et al., 2004), even at the level of experimental precision
of σ(sin 2β) = 0.005, theoretical uncertainties in the determination of β through aψKS

can be neglected. As the
decay amplitude is dominated by the tree diagrams, the new physics effects in the decay amplitude are likely to
be unimportant but of course new physics could enter through B0

d − B̄0
d mixing implying that in such a case the

asymmetry in question measures not β but β+θd with θd being a new complex phase in the B0
d− B̄0

d mixing. We have
considered such a scenario in Section VI. The important point is that β+ θd can be measured in a theoretically clean
manner, but the fact that the measurement is in principle subject to “new physics” pollution does not guarantee the
extraction of the true angle β from this asymmetry.

The direct determination of the angle α by means of the time dependent CP asymmetry in the decays B0
d(B̄

0
d)→

π+π− is a different story. As indicated by the data from Belle and BaBar (Abe et al., 2003a, 2004; Jawahery, 2003),
in this decay, in addition to tree diagram contributions also QCD penguin diagrams play a significant role.

A clean measurement of α in the presence of this ”QCD penguin pollution” is therefore impossible from this decay
alone. The well known strategy to deal with this ”penguin problem” is the isospin analysis of Gronau and London
(Gronau and London, 1990). It requires however the measurement of Br(B0 → π0π0), which for years was not
available. With the recent measurements of this branching ratio at BaBar and Belle first steps in this direction could
be made but the necessary input is incomplete yet and a precise determination of α using this method appears from
the present perspective rather difficult. For this reason several, rather involved, strategies have been proposed. They
are reviewed in (Ali et al., 2004; Ball et al., 2000; Buras and Fleischer, 1998; Harrison and Quinn, 1998). A subset
of these references can be found in (Charles, 1999; Fleischer and Mannel, 1997; Gronau, 1993; Gronau et al., 2001;
Grossman and Quinn, 1998). It is to be seen which of these methods will eventually allow us to measure α with a
respectable precision.

More promising appear the strategies in which the B → ππ system is used in conjuction with the angle β from
aψKS

and with some minimal information on B → πK decays to extract the angle γ from these decays. This strategy
has been inspired by the analyses performed in (Fleischer, 1999c, 2000; Fleischer et al., 2003; Fleischer and Matias,
2002) and refined recently in (Buras et al., 2004c,d), where γ = (64.7 ± 6.6)◦ has been found. Similar results have
been subsequently obtained in (Ali et al., 2004). The decay Bd → π+π− was also discussed in (Botella and Silva,
2003; Buchalla and Safir, 2004) in the context of bounds on γ and the UT. For other analyses see (Luo and Rosner,
2003) and references therein.

Next we should mention here Bd → φKS , that within the SM also measures the angle β with very small hadronic
uncertainties (Barbieri and Strumia, 1997; Ciuchini et al., 1997; Fleischer, 1997; Grossman et al., 1998a; Grossman
and Worah, 1997; London and Soni, 1997) but the fact that it is a pure penguin decay makes it subject to new physics
uncertainties. The departure of (sin 2β)φKS

from (sin 2β)ψKS
, as seen by Belle, may indicate indeed the presence

of new physics in this decay (Datta, 2002; Fleischer and Mannel, 2001; Grossman et al., 2003; Hiller, 2002; Khalil
and Kou, 2003; Raidal, 2002) but, as the BaBar result does not indicate a significant departure of (sin 2β)φKS

from
(sin 2β)ψKS

, the situation is rather unclear at present (Abe et al., 2003b; Aubert et al., 2004a; Browder, 2004). An
analogue of Bd → ψKS in Bs-decays is Bs → ψφ. The corresponding CP asymmetry measures here η (Buras, 1995)
in the Wolfenstein parametrization or equivalently the phase βs. It is very small, however, and this fact makes it a
good place to look for the physics beyond the SM. In particular the CP violation in B0

s − B̄0
s mixing from new sources

beyond the SM could be probed in this decay. Another useful channel for β is Bd → D+D−.
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There are other decays of B0
d and B0

s to CP eigenstates but it appears at present that only B0
d → ψKS can provide

a measurement of a CKM phase that could be put in a golden class together with K → πνν̄ decays.
Next decays of neutral B mesons B0

d and B0
s to CP non-eigenstates should be considered. The first prominent

strategy of this type is based on the full time dependent analysis of B0
d → D±π∓ and B̄0

d → D±π∓ (Diehl and Hiller,
2001; Dunietz, 1998; Dunietz and Sachs, 1988; Sachs, 1985). The fact that B0

d and B̄0
d can decay to the same final state

and the presence of only tree diagrams in these decays makes it possible to determine 2β + γ without any hadronic
uncertainties. Taking β from aψKS

, the angle γ can be determined. Unfortunately, the relevant interefences between
amplitudes are O(λ2) and the execution of this strategy is a very difficult experimental task. See (Silva et al., 2003)
for an interesting discussion.

The corresponding strategy in the B0
s(B̄

0
s ) sector is the one based on B0

s → D±
s K

∓ and B̄0
s → D±

s K
∓ (Aleksan

et al., 1992; Falk and Petrov, 2000; Fleischer and Dunietz, 1996; London et al., 2000). It measures 2βs + γ without
hadronic uncertainties and is experimentally more promising than the previous strategy as the relevant interference
effects are larger. It is the leading strategy for the determination of the angle γ at LHC and BTeV. The angle βs is
expected to be very small as already discussed in Section II and this can be tested in the CP asymmetry in Bs → ψφ.

We have then two strategies for γ that use the neutralB0
d and B0

s mesons that are theoretically very clean. Moreover,
as the decays proceed solely through tree diagrams, the pollution from new physics in the decay amplitudes is likely
to be negligible. But of course new physics can enter through new complex phases in B0

d − B̄0
d and B0

s − B̄0
s mixings.

As this new complex phases are universal and can be extracted from the asymmetries in Bd → ψKS and Bs → ψφ,
respectively, the angle γ can be extracted from both strategies in a theoretically clean manner without new physics
pollution.

Clearly in order to avoid the pollution from new physics and hadronic uncertainties directly, we need strategies
involving charged B decays that proceed only through tree diagrams, as in the last two strategies, but in contrast to
them are not affected by the B0

d,s − B̄0
d,s mixings and consequently are free from any new phases. One would think

that in this case it would be impossible to find a clean strategy, as B± decays, in which CP violation is only in the
decay amplitudes, are generally subjects to large hadronic uncertainties. But here this problem can be avoided by
considering several channels simultaneously, a luxury that is not given to us in K decays.

Indeed, by replacing the spectator s-quark in the strategy involving B0
s → D±

s K
∓ and B̄0

s → D±
s K

∓ (Aleksan
et al., 1992; Falk and Petrov, 2000; Fleischer and Dunietz, 1996; London et al., 2000) through the u-quark one arrives
at decays of B± that can be used to extract the angle γ (Gronau and Wyler, 1991). One can easily check that this
strategy is unaffected by penguin contributions. Moreover, as particle-antiparticle mixing is absent here, γ can be
measured directly. Both these features make it plausible that this strategy, not involving to first approximation any
loop diagrams, is particularly suited for the determination of γ without any new physics pollution.

By considering six decay rates B± → D0
CPK

±, B+ → D0K+, D̄0K+ and B− → D0K−, D̄0K− where D0
CP =

(D0 +D̄0)/
√

2 is a CP eigenstate, the well known triangle construction due to Gronau and Wyler (Gronau and Wyler,
1991) allows to determine γ. However, the method is not without problems. The detection of D0

CP , that is necessary
for this determination, is experimentally challenging. Moreover, the small branching ratios of the colour suppressed
channels B+ → D0K+ and its charge conjugate, and the absence of this suppression in the two remaining channels
imply a rather squashed triangle thereby making the extraction of γ very difficult. Still in view of the great potential
of this strategy in determining the true angle γ, all efforts should be made to realize it. Variants of this method that
could be more promising are discussed in (Atwood et al., 1997; Dunietz, 1991; Gronau and London., 1991).

The three strategies discussed above can be generalized to other decays. In particular (Dunietz, 1991; Fleischer,
2003a,b,c; Gronau and London., 1991)

• 2β + γ and γ can be measured in

B0
d → KSD

0, KSD̄
0, B0

d → π0D0, π0D̄0 (VIII.43)

and the corresponding CP conjugated channels,

• 2βs + γ and γ can be measured in

B0
s → φD0, φD̄0, B0

s → K0
SD

0, KSD̄
0 (VIII.44)

and the corresponding CP conjugated channels,

• γ can be measured by generalizing the Gronau–Wyler construction to B± → D0π±, D̄0π± and to Bc decays
(Fleischer and Wyler, 2000):

B±
c → D0D±

s , D̄
0D±

s , B±
c → D0D±, D̄0D± . (VIII.45)
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It appears that the methods for γ discussed here may give useful results at later stages of CP-B investigations, in
particular at LHC-B and BTeV.

Finally a few comments on the strategies for γ that use the U-spin symmetry should be made here. Although not
as clean as the strategies discussed above, they could be the first to offer a respectable direct determination of this
angle. They have been first proposed in (Fleischer, 1999a,b,c). The first strategy involves the decays B0

d,s → ψKS

and B0
d,s → D+

d,sD
−
d,s. The second strategy involves B0

s → K+K− and B0
d → π+π−. They are mainly limited by

U-spin breaking effects. They are promising for Run II at Tevatron and in particular for LHCB and BTeV.
A method of determining γ, using B+ → K0π+ and the U-spin related processes B0

d → K+π− and B0
s → π+K−,

was presented in (Chiang and Wolfenstein, 2000; Gronau and Rosner, 2000). A general discussion of U-spin symmetry
in charmless B decays and more references to this topic can be found in (Fleischer, 2002, 2004; Gronau, 2000).

Useful constraints for the UT within the SM and its extensions will come from the future measurements of ∆Ms

and the branching ratios for B → Xs,dνν̄ and Bs,d → µ+µ−. The relevant formulae within the SM and MFV are
given in (II.44), (III.13) and (III.14), respectively. The fate of the usefulness of the measurement of ∆Ms depends
on the accuracy with which ξ can be calculated. A similar comment applies to Bs,d → µ+µ−. As shown in (Buras,
2003c), by combining ∆Ms,d with Bs,d → µ+µ− the uncertainties due to FBd

and FBs
in all these quantities can

be eliminated making the tests cleaner, but of course some information is lost in these combinations and it is very
desirable to have clean individual predictions for the four observables in question.

The case of B → Xs,dνν̄ is a different story. Here the relevant branching ratios are theoretically clean and their
ratio offers probably the cleanest measurement of Rt but the experiments are very difficult. Using instead exclusive
decays like B → K∗νν̄ or B → ρνν̄, that are easier to measure, brings in theoretical uncertainties in the relevant
formfactors. It should also be stated that B → Xsνν̄ and B → Xdνν̄ taken separately are not as clean as K → πνν̄
decays due to significant dependence on m2

c/m
2
b in the process of the normalization to tree level decays. Still the

measurements of the branching ratios in question would be an important advance.
One should also emphasize that in models with non-minimal flavour violation the appearance of significant con-

tributions from new operators can introduce new hadronic uncertainties that cannot be canceled in the ratios of the
relevant observables. This is the case of the ratio ∆Md/∆Ms that in the supersymmetric models with large tanβ is
related to Rt in a more complicated manner (Buras et al., 2002, 2003a) than given in (II.44) or (VI.17).

Finally, we should comment on the decays B → Xs,dγ and B → Xs,dl
+l− and their exclusive counterparts. These

decays played already an important role in bounding the parameters of the SM and its extensions like supersymmetry.
They will certainly continue to play this role. On the other hand, from the present perspective, the accuracy of the
tests that can be made with the help of these decays are at best at the level of ±10% and consequently in the long run
they will not be able to compete with the K → πνν̄ decays that are theoretically much cleaner. This is in particular
the case of KL → π0νν̄ that eventually should be more powerful in searching for new physics than B → Xs,dl

+l− as
stressed in (D’Ambrosio et al., 2002).

IX. LONG DISTANCE CONTRIBUTIONS TO K → πνν̄

In this section we discuss briefly the long distance contributions to the decays K+ → π+νν̄ and KL → π0νν̄ that
we have neglected so far. More detailed discussions and explicit calculations have been presented in (Buchalla and
Isidori, 1998; Ecker et al., 1988; Fajfer, 1997; Geng et al., 1996; Hagelin and Littenberg, 1989; Lu and Wise, 1994; Rein
and Sehgal, 1989). These effects can be potentially interesting especially when the NNLO calculation anticipated in
Section IV is actually performed and Br(K+ → π+νν̄) and Br(KL → π0νν̄) are measured with an accuracy of 5%.

Accordingly, we begin with the discussion of K+ → π+νν̄, where there can be, in principle, two additional contri-
butions to the branching ratio:

• Effects through soft u quarks in the penguin loop that induce an on shell K+ → π+Z0 → π+νν̄ transition.
These effects are addressed (Ecker et al., 1988; Fajfer, 1997; Geng et al., 1996; Hagelin and Littenberg, 1989;
Lu and Wise, 1994; Rein and Sehgal, 1989) in chiral perturbation theory.

• Higher dimensional operators contributing to the OPE in the charm sector (Falk et al., 2001).

In particular, discussing only the contributions involving the Z0 neutral current, which receive a ∆I = 1/2 en-
hancement, the coupling of the Z0 can be composed into the electromagnetic component and the left handed weak
current:

Lint =

√

g2
1 + g2

2

2
Z0µ

[

JLµ − 2 sin2 θWJ
em
µ

]

, (IX.46)
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where

JLµ = ūLγµu− d̄LγµdL − s̄Lγµs ≡ JL8µ + JL1µ, (IX.47)

Jemµ =
2

3
ūγµu−

1

3
d̄γµd−

1

3
s̄γµs . (IX.48)

Here, JLµ and Jemµ transform as (8L, 1R) and (1L, 1R) with respect to the chiral symmetry group SU(3)L × SU(3)R.

(a)

(b)

(c)

FIG. 10 Leading order chiral perturbation theory diagrams contributing to a K+ → π+Z0 vertex (from (Lu and Wise, 1994)).
The dashed lines denote the pion and kaon, while the wavy line denotes the Z0, and the dot indicates the insertion of a flavor
changing effective vertex.

The leading order diagrams for the K+ → π+Z0 vertex are shown in Fig 10. A calculation of these diagrams for the
electromagnetic current (Ecker et al., 1988) yields that the sum of all contributions cancels. The octet contribution
of the weak current can be calculated and is found to be numerically about 5% of the charm contribution:

Br(K+ → π+νν̄)LD
κ+(V ∗

usVud)
2

=

(

g8π2

3

)2 (
Fπ
MW

)4

, (IX.49)

where g8 is known to be |g8| ≃ 5.1 and Fπ is the pion decay constant. Unfortunately, the analogous calculation for the
singlet piece is not possible, due to the axial U(1) anomaly that spoils chiral symmetry. Lu and Wise (Lu and Wise,
1994) circumvent this problem by considering the large Nc limit, where the U(1) symmetry is restored. Calculating
then the diagrams gives a contribution that precisely cancels the octet piece in (IX.49). One would expect that some
cancellations take place also in the physical case of three colors.

On the other hand, there are the effects from higher dimensional operators in the OPE (Falk et al., 2001), which
would naturally to be expected comparable in size to the effects just discussed. They have to be considered only in
the charm contributions, if one assumes a natural scaling of M2

K/m
2
q in the Wilson coefficients. The scaling of the

Inami-Lim functions then leads to an overall scaling of M2
K/M

4
W , which is independent of the quark masses. The top

contribution is then simply suppressed by CKM factors.
Going to dimension eight, one finds two operators that appear when expanding the penguin and box diagrams:

Ol1 = s̄γν(1 − γ5)d(i∂)2
(

ν̄lγν(1− γ5)νl
)

Ol2 = s̄γν(1 − γ5)(iD)2d ν̄lγν(1− γ5)νl +
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2s̄γν(1− γ5)(iDµ)d ν̄lγν(1− γ5)(∂µ)νl +

s̄γν(1 − γ5)d ν̄lγν(1− γ5)(i∂)2νl , (IX.50)

where Dµ is the covariant derivative involving the gluon field. While the matrix element of Ol1 can be rather reliably
estimated and gives a negligible contribution compared to the leading dimension six terms, the matrix element of Ol2
is harder to estimate, due to the gluon appearing in the covariant derivative. It is found that in a very pessimistic
scenario these contributions could have effects that are comparable to the uncertainties from the charm mass. The
final word here will be spoken from the lattice community.

Let us now turn to KL → π0νν̄. Long distance contributions here are mostly equivalent to CP conserving effects
and have been comprehensively studied in (Buchalla and Isidori, 1998). As for K+ → π+νν̄, there are effects from soft
up quarks, that are treated in chiral perturbation theory, and higher dimensional operators in the charm sector, which
are actually short distance effects. It is found that they are suppressed by several effects, reinforcing the theoretically
clean character of this decay. Let us briefly describe these effects.

The contributions from soft up quarks in the penguin loops have been studied in (Buchalla and Isidori, 1998) and
in (Geng et al., 1996). As is the case for K+ → π+νν̄, the leading diagrams appear at one loop order. They are
calculated explicitely by Buchalla and Isidori (Buchalla and Isidori, 1998), who find, taking into account also phase
space suppression, that the CP conserving long distance contributions are suppressed by approximately a factor of
10−5 compared to the dominant top contribution.

The next contribution that can be important are then higher dimensional operators in the OPE. As (Buchalla and
Isidori, 1998) studies only CP conserving contributions only one operator that is antisymmetric in neutrino momenta,
survives from the expansion of the box diagrams (contributions from Z0-penguins also drop out for the same reason):

HCPC = −GF√
2

α

2π sin2 ΘW

λc ln
mc

µ

1

M2
W

Tαµν̄(
←−
∂α − ∂α)γµ(1− γ5)ν , (IX.51)

Tαµ = s̄
←−
Dαγµ(1− γ5)d− d̄γµ(1− γ5)Dαs . (IX.52)

There arise now several suppression factors: First, there is the naive suppression of the operator scaling, which
is estimated to be O(λcM

2
K/ImλtM

2
W ) ≈ 10% compared to the leading top contribution. Here, the smallness of

MK/MW is compensated by the ratio of CKM factors λc/Imλt.
The suppression is more severe when the matrix elements are calculated, since the leading order KL − π0 matrix

element in chiral perturbation theory is found to be:

〈π0(p)|Tαµ|KL(k)〉 = − i
2
[(k − p)α(k + p)µ +

1

4
m2
Kgαµ] , (IX.53)

which vanishes when multiplied with the leptonic current in the operator due to the equations of motion and the
negligible neutrino masses. The chiral suppression of the NLO (p4) terms leads to an additional reduction of higher
dimensional operator contributions by about m2

K/(8π
2f2
π) ≈ 20%. Finally, one has to take into account also phase

space effects, which further suppress these terms.
Estimating the O(p4) matrix elements and performing the phase space calculations, the authors of (Buchalla and

Isidori, 1998) find that short distance CP conserving effects are suppressed by a factor of 10−5 compared to the
dominant top contribution and conclude that they are ”safely negligible, by a comfortably large margin”.

It is then fair to say, from the present perspective, that long distance effects are rather well under control especially
in KL → π0νν̄, but also in K+ → π+νν̄, where an improved estimate of the relevant hadronic matrix elements could
increase our confidence in the negligibility of these effects. In view of the precision that should be achieved by the
NNLO calculation it seems, however, mandatory to keep an eye on the contributions of higher dimensional operators
in K+ → π+νν̄.

X. CONCLUSIONS AND OUTLOOK

In the present review we have summarized the present status of the rare decays K+ → π+νν̄ and KL → π0νν̄,
paying in particular attention to theoretical and parametric uncertainties. Our analysis reinforced the importance
of these decays in testing the SM and its extensions. We have pointed out that the clean theoretical character of
these decays remains valid in essentially all extensions of the SM, whereas this is often not the case for non-leptonic
two-body B decays used to determine the CKM parameters through CP asymmetries and/or other strategies. Here,
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in extensions of the SM in which new operators and new weak phases are present, the mixing induced asymmetry
aφKS

and other similar asymmetries suffer from potential hadronic uncertainties that make the determination of the
relevant parameters problematic unless the hadronic matrix element can be calculated with sufficient precision. In
spite of advances in non-perturbative calculations of non-leptonic amplitudes for B decays (Bauer et al., 2002a,b,c;
Beneke et al., 1999, 2002; Beneke and Feldmann, 2003; Beneke and Neubert, 2003; Keum et al., 2001a,b; Stewart,
2003), we are still far away from precise calculations of non-leptonic amplitudes from first principles. On the other
hand the branching ratios for K+ → π+νν̄ and KL → π0νν̄ can be parametrized in essentially all extensions of the
SM by a single complex function X (real in the case of MFV models) that can be calculated in perturbation theory
in any given extension of the SM.

There exists, however, a handful of strategies in the B system that similarly to K → πνν̄, are very clean. We have
discussed them briefly in the previous section. Moreover, in contrast to K → πνν̄, there exist strategies involving B
decays that allow not only a theoretically clean determination of the UT but also one free from new physics pollution.

Our main findings are as follows:

• Our present predictions for the branching ratios read

Br(K+ → π+νν̄)SM = (7.8± 1.2) · 10−11, (X.54)

Br(KL → π0νν̄)SM = (3.0± 0.6) · 10−11. (X.55)

This is an accuracy of ±15% and ±20%, respectively.

• Our analysis of theoretical uncertainties in K → πνν̄, that come almost exclusively from the charm contribution
to K+ → π+νν̄, reinforces the desire to perform a NNLO analysis of this contribution (Buras et al., 2004b).
Indeed the ±18% uncertainty in Pc(X) coming dominantly from the scale uncertainties and the value of mc(mc),
translates into an uncertainty of ±7.0% in the determination of |Vtd|, ±0.04 in the determination of sin 2β and
±10% in the prediction for Br(K+ → π+νν̄). We believe that an NNLO analysis of the charm component and
further progress on the determination of mc(mc) could reduce the error in Pc(X) down to ±5%, implying the
reduced error in |Vtd| of ±2%, in sin 2β of ±0.011 and ±3% in Br(K+ → π+νν̄).

• Further progress on the determination of the CKM parameters, that in the next few years will dominantly
come from BaBar, Belle and Tevatron and later from LHC and BTeV, should allow eventually the predictions
for Br(K+ → π+νν̄) and Br(KL → π0νν̄) with the uncertainties of roughly ±5% or better. It should be
emphasized that this accuracy cannot be matched by any other rare decay branching ratio in the field of meson
decays.

• We have analyzed the impact of precise measurements of Br(K+ → π+νν̄) and Br(KL → π0νν̄) on the unitarity
triangle and other observables of interest, within the SM. The results of this study are summarized in table XI.
In particular we have analyzed the accuracy with which sin 2β and the angle γ could be extracted from these
decays. Provided both branching ratios can be measured with the accuracy of ±5%, an error on sin 2β of 0.025
could be achieved. The determination of γ requires an accurate measurement of Br(K+ → π+νν̄) and the
reduction of the errors in Pc(X) and |Vcb|. With a ±5% measurement of Br(K+ → π+νν̄) and the reduction of
the errors in Pc(X) and |Vcb| anticipated in the coming years, γ could be measured with an error of ±5◦ − 6◦.

• We have emphasized that the simultaneous investigation of the K → πνν̄ complex, the mass differences ∆Md,s

and the angles β and γ from clean strategies in two body B decays, should allow to disentangle different new
physics contributions to various observables and determine new parameters of the extensions of the SM. The
(Rt, β), (Rb, γ), (β, γ) and (η̄, γ) strategies for UT when combined with K → πνν̄ decays are very useful in this
goal. This is in particular the case for the (Rb, γ) strategy that is related to the reference unitarity triangle
(Barenboim et al., 1999; Cohen et al., 1997; Goto et al., 1996; Grossman et al., 1997). A graphical representation
of these investigations is given in Fig. 9.

• We have presented a new ”golden relation” between β, γ and Br(KL → π0νν̄), given in (III.20), that with
improved values of mt and Br(KL → π0νν̄) should allow very clean test of the SM one day. Another new
relation is the one between β, γ and Br(K+ → π+νν̄), that is given in (III.11). Although not as clean as the
golden relation in (III.20) because of the presence of Pc, it should play a useful role in future investigations.

• We have presented the results for both decays in models with minimal flavour violation and in three scenarios
with new complex phases in enhanced Z0 penguins and/or B0

d − B̄0
d mixing. The effects of the new complex

phase in Z0 penguins in Br(KL → π0νν̄) turn out to be truely spectacular (Buras et al., 2004c), with a smaller
effect in Br(K+ → π+νν̄).
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• We have reviewed the results for Br(K+ → π+νν̄) and Br(KL → π0νν̄) in a number of specific extensions
of the SM. In particular we have discussed supersymmetry with MFV, more general supersymmetric models
with new complex phases, models with universal extra dimensions and models with lepton-flavour mixing. Each
of these models has some characteristic predictions for the branching ratios in question, so that it should be
possible to distinguish between various alternatives. Simultaneous investigations of other observables should be
very helpful in this respect.

• Finally we have compared the usefulness of K → πνν̄ decays in testing various models with the one of other
decays. While in the K system K → πνν̄ decays have no competition, there is a handful of B decays and related
strategies that are also theoretically very clean. It is precisely the comparison between the results of these clean
strategies in the B system with the ones obtained one day from K → πνν̄ decays that will be most interesting.

We hope we have convinced the reader that the very clean rare decays K+ → π+νν̄ and KL → π0νν̄ deserve a
prominent status in the field of flavour and CP violation and that precise measurements of their branching ratios are
of utmost importance. Let us hope that our waiting for these measurements will not be too long.
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APPENDIX A: Remarks on Pc(X)

The results in tables I and II have been obtained using renormalization group evolution first from MW down to
µb = O(mb) in a f = 5 theory and subsequent evolution from µb = O(mb) down to µc = O(mc) in a f = 4 theory.
The resulting analytic expressions are rather complicated and will not be presented here. However, it has been found
in (Buchalla and Buras, 1994a, 1999) and confirmed by the last two authors here, that within the accuracy of 0.1%
one can proceed instead as follows.

• For a fixed value of αs(MZ) in a f = 5 theory one finds the corresponding αs(µc) in a f = 4 theory incorporating
the threshold at µb.

• One uses then the formulae (6)–(10) for X l
NL of (Buchalla and Buras, 1999) in the f = 4 theory in the full range

µc ≤ µ ≤MW without incorporating the threshold at µb. To this end the value of αs(MW ) has to be evaluated
from αs(µc) obtained in the first step. As now no threshold at µb is incorporated, the resulting αs(MW ) differs
from the one one would obtain in the first step of this procedure. It turns out that this difference corrects almost
exactly for the neglect of the threshold in explicit formulae for XNL so that numerically the resulting X l

NL and
Pc(X) are within 0.1% equal to the ones obtained with the µb threshold taken into account.

For the convenience of the reader we recall the formulae for X l
NL of (Buchalla and Buras, 1999). First

X l
NL = CNL − 4B

(1/2)
NL , (A.1)

where CNL and B
(1/2)
NL correspond to the Z0 penguin and the box-type contribution, respectively. We have (xc =

m2
c/M

2
W )

CNL =
xc(mc)

32
K

24
25
c

[(

48

7
K+ +

24

11
K− −

696

77
K33

)(

4π

αs(µ)
+

15212

1875
(1−K−1

c )

)

+

(

1− ln
µ2

m2
c

)

(16K+ − 8K−)− 1176244

13125
K+ −

2302

6875
K− +

3529184

48125
K33

+ K

(

56248

4375
K+ −

81448

6875
K− +

4563698

144375
K33

)]

, (A.2)

where

K =
αs(MW )

αs(µ)
, Kc =

αs(µ)

αs(mc)
, (A.3)
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K+ = K
6
25 , K− = K

−12
25 , K33 = K

−1
25 , (A.4)

B
(1/2)
NL =

x(m)

4
K

24
25
c

[

3(1−K2)

(

4π

αs(µ)
+

15212

1875
(1−K−1

c )

)

− ln
µ2

m2
− r ln r

1− r −
77

3
+

15212

625
K2 +

4364

1875
KK2

]

. (A.5)

Here K2 = K−1/25, r = m2
l /m

2
c(mc) and ml is the lepton mass. In (A.2) – (A.5) the scale is µ = O(mc). The

two-loop expression for αs(µ) is given by

αs(µ) =
4π

β0 ln µ2

Λ2

[

1− β1

β2
0

ln ln µ2

Λ2

ln µ2

Λ2

]

, (A.6)

β0 = 11− 2

3
f, β1 = 102− 38

3
f. (A.7)

The effective number of flavours to be used in the expressions above is f = 4. The QCD scale in (A.6) is Λ = Λ
(4)

MS

with the values collected in table XVII below. To the considered order, the explicit ln(µ2/m2
c) terms in (A.2) and

(A.5) cancel the µ-dependence of the leading terms.
In table XVII, we give the values of the relevant quantities involved in this simplified analysis that inserted in the

formulae (A.1)–(A.7) reproduce to an excellent accuracy the numbers in tables I and II. Additionally, for completeness,
we also give in table XVIII the values of Xe

NL and Xτ
NL that enter the formula for Pc(X) in (II.12).

TABLE XVII Values of α
(f)
s (µ) and Λ

(f)

MS
corresponding to given values of α

(5)
s (MZ) with mc = 1.30 GeV and mb = 4.2 GeV.

α
(5)
s (MZ) 0.115 0.116 0.117 0.118 0.119 0.120 0.121

Λ
(5)

MS
[MeV] 190 202 214 226 239 253 267

α
(4)
s (mc) 0.356 0.368 0.381 0.394 0.409 0.425 0.442

Λ
(4)

MS
[MeV] 277 292 308 323 340 357 374

α
(4)
s (MW ) 0.1119 0.1129 0.1138 0.1147 0.1156 0.1166 0.1175

TABLE XVIII The functions Xe
NL and Xτ

NL for various αs(MZ) and mc.

Xe
NL/10−4 Xτ

NL/10−4

α
(5)
s (MZ) \ mc [ GeV] 1.25 1.30 1.35 1.25 1.30 1.35

0.115 10.46 11.33 12.22 7.09 7.81 8.56

0.116 10.35 11.22 12.11 6.98 7.70 8.44

0.117 10.24 11.10 11.99 6.87 7.59 8.33

0.118 10.12 10.98 11.87 6.75 7.47 8.21

0.119 9.99 10.85 11.74 6.63 7.34 8.08

0.120 9.86 10.72 11.61 6.49 7.20 7.94

0.121 9.72 10.58 11.47 6.35 7.06 7.80
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Bobeth, C., A. J. Buras, F. Krüger, and J. Urban, 2002, Nucl. Phys. B630, 87.
Boos, H., T. Mannel, and J. Reuter, 2004, hep-ph/0403085.
Bornheim, A., et al. (CLEO), 2003, Phys. Rev. D68, 052002.
Bossi, F., G. Colangelo, and G. Isidori, 1999, Eur. Phys. J. C6, 109.
Botella, F. J., and J. P. Silva, 2003, hep-ph/0312337.
Browder, T. E., 2004, Int. J. Mod. Phys. A19, 965.
Bryman, D., 2002, hep-ex/0206072.
Buchalla, G., 2003, hep-ph/0302145.
Buchalla, G., and A. J. Buras, 1993a, Nucl. Phys. B400, 225.
Buchalla, G., and A. J. Buras, 1993b, Nucl. Phys. B398, 285.
Buchalla, G., and A. J. Buras, 1994a, Nucl. Phys. B412, 106.



56

Buchalla, G., and A. J. Buras, 1994b, Phys. Lett. B333, 221.
Buchalla, G., and A. J. Buras, 1996, Phys. Rev. D54, 6782.
Buchalla, G., and A. J. Buras, 1998, Phys. Rev. D57, 216.
Buchalla, G., and A. J. Buras, 1999, Nucl. Phys. B548, 309.
Buchalla, G., A. J. Buras, and M. K. Harlander, 1991, Nucl. Phys. B349, 1.
Buchalla, G., A. J. Buras, and M. E. Lautenbacher, 1996a, Rev. Mod. Phys. 68, 1125.
Buchalla, G., G. Burdman, C. T. Hill, and D. Kominis, 1996b, Phys. Rev. D53, 5185.
Buchalla, G., G. D’Ambrosio, and G. Isidori, 2003, Nucl. Phys. B672, 387.
Buchalla, G., G. Hiller, and G. Isidori, 2001, Phys. Rev. D63, 014015.
Buchalla, G., and G. Isidori, 1998, Phys. Lett. B440, 170.
Buchalla, G., and A. S. Safir, 2004, Phys. Rev. Lett. 93, 021801.
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Kühn, J. H., and M. Steinhauser, 2001, Nucl. Phys. B619, 588, [Erratum-ibid. B640 (2002) 415].
Lai, A., et al. (NA48), 2001, Eur. Phys. J. C22, 231.
Lai, A., et al., 2003, Phys. Lett. B556, 105.
Laplace, S., 2002, hep-ph/0209188.
Laplace, S., Z. Ligeti, Y. Nir, and G. Perez, 2002, Phys. Rev. D65, 094040.
Lazzeroni, C., 2003, talk at HEP 2003, Europhysics Conference, Aachen, Germany, July 17-23

2003,http://eps2003.physik.rwth-aachen.de/.
Littenberg, L., 2002, hep-ex/0212005.
Littenberg, L. S., 1989, Phys. Rev. D39, 3322.
London, D., N. Sinha, and R. Sinha, 2000, Phys. Rev. Lett. 85, 1807.
London, D., and A. Soni, 1997, Phys. Lett. B407, 61.
Lu, M., and M. B. Wise, 1994, Phys. Lett. B324, 461.
Luo, Z., and J. L. Rosner, 2003, Phys. Rev. D68, 074010.
Marciano, W. J., and Z. Parsa, 1996, Phys. Rev. D53, 1.
Melnikov, K., and T. v. Ritbergen, 2000, Phys. Lett. B482, 99.
Misiak, M., S. Pokorski, and J. Rosiek, 1998, Adv. Ser. Direct. High Energy Phys. 15, 795, hep-ph/9703442.
Misiak, M., and J. Urban, 1999, Phys. Lett. B451, 161.
Moser, H. G., and A. Roussarie, 1997, Nucl. Instrum. Meth. A384, 491.
Mukhopadhyaya, B., and A. Raychaudhuri, 1987, Phys. Lett. B189, 203.
NA48 Collaboration, 2004, http://na48.web.cern.ch/NA48/NA48-3/index.html.
Nir, Y., 2001, hep-ph/0109090.
Nir, Y., and G. Raz, 2002, Phys. Rev. D66, 035007.
Nir, Y., and D. J. Silverman, 1990a, Nucl. Phys. B345, 301.
Nir, Y., and D. J. Silverman, 1990b, Phys. Rev. D42, 1477.
Nir, Y., and M. P. Worah, 1998, Phys. Lett. B423, 319.



59

Perez, G., 1999, JHEP 09, 019.
Perez, G., 2000, JHEP 12, 027.
Rai Choudhury, S., N. Gaur, and A. S. Cornell, 2004, hep-ph/0402273.
Raidal, M., 2002, Phys. Rev. Lett. 89, 231803.
Rein, D., and L. M. Sehgal, 1989, Phys. Rev. D39, 3325.
Rolf, J., and S. Sint (ALPHA), 2002, JHEP 12, 007.
Sachs, R. G., 1985, eFI-85-22-CHICAGO.
Silva, J. P., A. Soffer, L. Wolfenstein, and F. Wu, 2003, Phys. Rev. D67, 036004.
Stewart, I. W., 2003, hep-ph/0308185.
Stocchi, A., 2004, hep-ph/0405038.
Urban, J., F. Krauss, U. Jentschura, and G. Soff, 1998, Nucl. Phys. B523, 40.
Vainshtein, A. I., V. I. Zakharov, V. A. Novikov, and M. A. Shifman, 1977, Phys. Rev. D16, 223.
Valencia, G., 1998, Nucl. Phys. B517, 339.
Wolfenstein, L., 1983, Phys. Rev. Lett. 51, 1945.
Yanir, T., 2002, JHEP 06, 044.
Yoshikawa, T., 2003, Phys. Rev. D68, 054023.


